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Problem 1. Decide for 127 and 212 + 1 = 4097 whether they are prime.

The primes below
√
127 are 2, 3, 5, 7 and 11 and 127 is not divisible by any of these.

212 + 1 = (24 + 1)(28 − 24 + 1) = 17 · 241 (we discussed this factorization in the context of
Fermat primes)

Problem 2 (5 points). Give an example of a primitive root modulo 7.

A number a is a primitive root modulo 7 if a6 ≡ 1 mod 7, but ak is not congruent to 1 for
any 1 ≤ k ≤ 5. A simple computation shows that 3 is a primitive root.

Problem 3 (24 points). (a) Show that
√
11 is irrational. (Without citing a theorem from the

lecture on October 31.)

(b) Show that for any p, q ∈ N, we have |
√
11− p

q | >
1

8q2

(One-point bonus variant: prove it with 7 instead of 8)

(c) Give a fraction p
q with p, q ∈ N such that 0 < |

√
11− p

q | <
1

3600 .

a) Either compute the continued fraction expansion of
√
11 and see that it is infinite (as we

will do in part c) or just argue as follows: Suppose
√
11 = a

b with a and b relative prime. Then
11b2 = a2. Thus a is divisible by 11 (by Euclid’s lemma) and we write it as 11c. Then b2 = 11c2

and thus b is also divisible by 11. This is in contradiction with b and a being relatively prime.
b) Suppose (for contradiction) that there are p, q ∈ N with |

√
11− p

q | ≤
1

7q2
. Multiplying this

inequality with
√
11 + p

q , we obtain:

|11− p2

q2
| ≤
√
11 + p

q

7q2
.

As 9 < 11 < 11.56, we have that 3 <
√
11 < 3.4. Thus, p

q ≤ 3.4+ 1
7 < 3.6 and hence

√
11+ p

q < 7.
Thus we obtain

|11− p2

q2
| < 7

7q2
=

1

q2
.

Multipliying with q2, we obtain |11q2−p2| < 1. The difference between two natural numbers can
only be smaller than 1 if both are equal. Hence 11 = p2

q2
and
√
11 = p

q . But
√
11 is irrational (as

1



2

shown in (a)) and so we obtain a contradiction. [An alternative proof is possible using continued
fractions.]

c) We write
√
11 = 3 + (

√
11− 3)

1√
11− 3

=

√
11 + 3

2
= 3 +

√
11− 3

2

2√
11− 3

=
√
11 + 3 = 6 +

√
11− 3.

This shows that the continued fraction expansion of
√
11 is [3; 3, 6]. We can compute the con-

vergents pn
qn

via the recursive formula p−1 = 1, p0 = a0 and pn = anpn−1 + pn−2 for the pn and
q−1 = 0, q0 = 1 and qn = anqn−1 + qn−2 for the qn. Thus the sequence of pn starts like this: 3,
10, 63, 199, ... and the sequence of qn like this: 1, 3, 19, 60,...

We know by a theorem from class that |
√
11 − pn

qn
| < 1

q2n
. Thus, taking n = 3, we obtain

|
√
11− 199

60 | <
1

3600 .

Problem 4 (8 points). Give two pairs (x, y) of positive integers such that 11y2 = x2 + 2x.

We add 1 to both sides and substract 11y2 to obtain 1 = (x + 1)2 − 11y2. This is a Pell’s
equation. We know that all the solutions (x+1, y) are of the form (pn, qn). Trying the first few,
we see that x + 1 = 10 and y = 3 is the first solution (as 100 − 99 = 1) and x + 1 = 199 and
y = 60 is the second (as 1992 − 11 · 602 = 1).

Of course, we don’t really have to just naively try these convergents. We know from the
continued fraction algorithm above that the denominator of every second α2n+1 is 1 for every n.
Thus, every pair (p2n+1, q2n+1) is a solution (x+ 1, y). (Here we are using that 2n+ 1 is odd.)

Problem 5 (15 points). Decide for the following two equations whether they have infinitely many
solutions (x, y) with x, y ∈ Q:

(a) x2 + y2 = 245

(b) y4 = x4 + 1

a) The curve cut out by x2 + y2 = 245 is a circle. Thus, there are infinitely many rational
solutions if there is one. Writing 245 = 5 · 49, we observe that 245 = 72 + 142. Thus, we have
one solution (x, y) = (7, 14) and hence infinitely many.

b) Let x = a
b and y = c

b be rational numbers with y4 = x4 + 1 and a, b, c ∈ Z (with b 6= 0).
Multiplying the equation with b4, we see that it is equivalent to a4 + b4 = c4. We have shown
in class the special case of Fermat’s last theorem that the only solutions of this equation satisfy
a = 0 or b = 0. The latter is already excluded, so we have a = 0 and b = ±c. This implies x = 0
and y = ±1. These are only two solutions and not infinitely many.

Problem 6 (8 points). Show that y2 = 29x2 + 11 does not have solutions with x, y ∈ Z.
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Assume that there is a solution (x, y). Considering the equation modulo 29, we see that
y2 ≡ 11 mod 29 and hence the Legendre symbol

(
11
29

)
must be 1.

On the other hand, we compute using quadratic reciprocity:(
11

29

)
=

(
29

11

)
=

(
7

11

)
= −

(
11

7

)
= −

(
4

11

)
= −1

To determine the signs in quadratic reciprocity we use here that 29 ≡ 1 mod 4, 11 ≡ 3 mod 4
and 7 ≡ 3 mod 4. Moreover, the last equality holds because 4 is a square. Thus, we obtain a
contradiction and there is no solution.

Problem 7. Show that there is an integer n between 219 and 2019 such that n divides 2n + 2.
(Hint: n can be chosen to be of the form 2pq with p and q primes.)

Let p and q be two different odd primes and n = 2pq. By the Chinese remainder theorem,
n|2n + 2 is equivalent to

22pq ≡ −2 mod 2

22pq ≡ −2 mod p

22pq ≡ −2 mod q.

The first congruence is automatically fulfilled. Note that 2p−1 ≡ 1 mod p and hence

22pq = 22(p−1)q · 22q ≡ 22q mod p.

As 2 is relatively prime to p, we can also divide by 2. Arguing similarly for q, we obtain that
the set of congruences above is equivalent to

22q−1 ≡ −1 mod p

22p−1 ≡ −1 mod q

Now it is time for an educated guess. We know that 2(p−1)/2 ≡
(
2
p

)
mod p by Euler’s theorem

and this is in particular always ±1. So let’s explore the possibility that p−1
2 = 2q − 1 or,

equivalently, that p = 4q − 1. As q is odd, this implies that p ≡ 3 mod 8 and hence
(
2
p

)
= −1.

Thus, p = 4q − 1 implies that the first congruence is automatically fulfilled.
Plugging p = 4q − 1 into the second congruence yields 28q−3 ≡ −1 mod q. As 2q−1 ≡ 1

mod q, we see that 28q−3 ≡ 25 = 32 mod q. Thus, the second congruence becomes equivalent
with q dividing 33, i.e. q = 3 or q = 11.

In the case q = 3, we obtain p = 11 and hence n = 2pq = 66. This satisfies n|2n + 2, but
66 < 219.

In the case q = 11, we obtain p = 43 (which is prime as it is not divisible by 2, 3 or 5) and
hence n = 2pq = 946. This satisfies n|2n + 2 and is between 219 and 2019. This solves the
problem.

Note that we did not show uniqueness, but this was also not asked for. So we were allowed
to use an educated guess to only look at solutions of a specific kind. Restricting the space of
solutions makes it often easier to find a solution. (You might have seen this technique before in
solving differential equations.)


