First exam - Elementaire Getaltheorie

Lennart Meier

September 24, 2019

In all problems write your solution in detail. Each step has to be proven or cited from class.
Problem 1 (10 points). For the following two equations, decide whether they have solutions with $x, y \in \mathbb{Z}$. If yes, give two different pairs (x, y) of solutions.
(a) $447 x+408 y=-3$
(b) $447 x+408 y=7$

Decide furthermore if the system of congruences

$$
\begin{aligned}
& a \equiv-3 \quad \bmod 447 \\
& a \equiv 7 \quad \bmod 408
\end{aligned}
$$

has a solution $a \in \mathbb{Z}$ and if yes, give such a solution.

Problem 2 (10 points). Let a be an arbitrary integer.
(a) Compute the remainder of a^{36} if we divide by 36.
(b) Show that $a^{36}-1$ is not a prime number.

Problem 3 (10 points). Recall that the sum of positive divisors $\sigma(n)$ of a natural number n with prime factorization $p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$ with $p_{1}<\cdots<p_{r}$ equals

$$
\prod_{i=1}^{r} \frac{p^{k_{i}+1}-1}{p_{i}-1}
$$

Give a similar formula for

$$
\sum_{0<d \mid n} d^{2} .
$$

