Solutions for first midterm

Lennart Meier

September 26, 2019

For each problem I give one possible approach. There might be other solutions. Please write to me if you find any typos or have other remarks.

Problem 1 (10 points). For the following two equations, decide whether they have solutions with $x, y \in \mathbb{Z}$. If yes, give two different pairs (x, y) of solutions.

- (a) 447x + 408y = -3
- (b) 447x + 408y = 7

Decide furthermore if the system of congruences

$$a \equiv -3 \mod{447}$$

 $a \equiv 7 \mod{408}$

has a solution $a \in \mathbb{Z}$ and if yes, give such a solution.

Solution: We use the Euclidean algorithm.

$$447 = 408 + 39$$

$$408 = 10 \cdot 39 + 18$$

$$39 = 2 \cdot 18 + 3$$

In particular, we see that gcd(447, 408) = 3 and thus that 447x + 408y = 7 does not have a solution as 3 does not divide 7. In contrast, the equation (a) has a solution. We write

 $3 = 39 - 2 \cdot 18 = 39 - 2 \cdot (408 - 10 \cdot 39) = -2 \cdot 408 + 21 \cdot (447 - 408) = 21 \cdot 447 - 23 \cdot 408.$

Thus, $(-21) \cdot 447 + 23 \cdot 408 = -3$. All other solutions are of the form $(-21 + 408k) \cdot 447 + (23 - 447k) \cdot 408 = -3$.

The system of congruences does not have a solution. Indeed, the first congruence implies that 3|a, while the second implies that a leaves the residue 1 when dividing by 3.

Problem 2 (10 points). Let a be an arbitrary integer.

- (a) Compute the remainder of a^{36} if we divide by 36.
- (b) Show that $a^{36} 1$ is not a prime number.

Solution: (a) We first consider the remainder of a^{36} when dividing by 4 and 9 respectively. Note that $\phi(4) = 2$ and $\phi(9) = 6$. Thus, $\phi(4)|36$ and $\phi(9)|36$. Euler's theorem implies hence

that if a is odd that $a^{36} \equiv 1 \mod 4$. Likewise if a is not divisible by 3, then $a^{36} \equiv 1 \mod 9$. If a is even, then clearly a^{36} is divisible by 4 and thus $a^{36} \equiv 0 \mod 36$. Likewise, if 3|a, then

If a is even, then clearly a^{36} is divisible by 4 and thus $a^{36} \equiv 0 \mod 36$. Likewise, if 3|a, then $a^{36} \equiv 0 \mod 9$.

By the Chinese remainder theorem, the residues $\mod 4$ and $\mod 9$ determine the residue $\mod 36$ completely. We obtain:

- If a odd and not divisible by 3, then $a^{36} \equiv 1 \mod 36$.
- If a odd and divisible by 3, then $a^{36} \equiv 9 \mod 36$ as $9 \equiv 1 \mod 4$ and $9 \equiv 0 \mod 9$.
- If a even and not divisible by 3, then $a^{36} \equiv 28 \mod 36$ as $28 \equiv 0 \mod 4$ and $28 \equiv 1 \mod 9$.
- If a is even and divisible by 3, then $a^{36} \equiv 0 \mod 36$.

Solution for b: For $a^{36} - 1$ to be a prime number, it must be positive; thus a > 1. In this case, both $a^{18} - 1$ and $a^{18} + 1$ are bigger than 1. Thus the factorization $a^{36} - 1 = (a^{18} - 1)(a^{18} + 1)$ implies that $a^{36} - 1$ is not prime.

Problem 3 (10 points). Recall that the sum of positive divisors $\sigma(n)$ of a natural number n with prime factorization $p_1^{k_1} \cdots p_r^{k_r}$ with $p_1 < \cdots < p_r$ equals

$$\prod_{i=1}^{r} \frac{p^{k_i+1}-1}{p_i-1}$$

Give a similar formula for

$$\sum_{0 < d \mid n} d^2.$$

Solution: The set of divisors of n is $\{p_1^{l_1} \cdots p_r^{l_r} : 0 \le l_i \le k_i\}$. Thus

$$\sum_{0 < d|n} d^2 = \sum_{0 \le l_1 \le k_1} \cdots \sum_{0 \le l_r \le k_r} (p_1^{l_1} \cdots p_r^{l_r})^2$$
$$= \prod_{i=1}^r \sum_{l_i=0}^{k_i} p^{2l_i}$$
$$= \prod_{i=1}^r \frac{(p^2)^{l_i+1} - 1}{p_i^2 - 1}$$