Solutions for first midterm

Lennart Meier

September 26, 2019

For each problem I give one possible approach. There might be other solutions. Please write to me if you find any typos or have other remarks.

Problem 1 (10 points). For the following two equations, decide whether they have solutions with $x, y \in \mathbb{Z}$. If yes, give two different pairs (x, y) of solutions.
(a) $447 x+408 y=-3$
(b) $447 x+408 y=7$

Decide furthermore if the system of congruences

$$
\begin{aligned}
& a \equiv-3 \quad \bmod 447 \\
& a \equiv 7 \quad \bmod 408
\end{aligned}
$$

has a solution $a \in \mathbb{Z}$ and if yes, give such a solution.
Solution: We use the Euclidean algorithm.

$$
\begin{aligned}
447 & =408+39 \\
408 & =10 \cdot 39+18 \\
39 & =2 \cdot 18+3
\end{aligned}
$$

In particular, we see that $\operatorname{gcd}(447,408)=3$ and thus that $447 x+408 y=7$ does not have a solution as 3 does not divide 7 . In contrast, the equation (a) has a solution. We write

$$
3=39-2 \cdot 18=39-2 \cdot(408-10 \cdot 39)=-2 \cdot 408+21 \cdot(447-408)=21 \cdot 447-23 \cdot 408
$$

Thus, $(-21) \cdot 447+23 \cdot 408=-3$. All other solutions are of the form $(-21+408 k) \cdot 447+(23-$ $447 k) \cdot 408=-3$.

The system of congruences does not have a solution. Indeed, the first congruence implies that $3 \mid a$, while the second implies that a leaves the residue 1 when dividing by 3 .

Problem 2 (10 points). Let a be an arbitrary integer.
(a) Compute the remainder of a^{36} if we divide by 36.
(b) Show that $a^{36}-1$ is not a prime number.

Solution: (a) We first consider the remainder of a^{36} when dividing by 4 and 9 respectively.
Note that $\phi(4)=2$ and $\phi(9)=6$. Thus, $\phi(4) \mid 36$ and $\phi(9) \mid 36$. Euler's theorem implies hence that if a is odd that $a^{36} \equiv 1 \bmod 4$. Likewise if a is not divisible by 3 , then $a^{36} \equiv 1 \bmod 9$.

If a is even, then clearly a^{36} is divisible by 4 and thus $a^{36} \equiv 0 \bmod 36$. Likewise, if $3 \mid a$, then $a^{36} \equiv 0 \bmod 9$.

By the Chinese remainder theorem, the residues $\bmod 4$ and $\bmod 9$ determine the residue mod 36 completely. We obtain:

- If a odd and not divisible by 3 , then $a^{36} \equiv 1 \bmod 36$.
- If a odd and divisible by 3 , then $a^{36} \equiv 9 \bmod 36$ as $9 \equiv 1 \bmod 4$ and $9 \equiv 0 \bmod 9$.
- If a even and not divisible by 3 , then $a^{36} \equiv 28 \bmod 36$ as $28 \equiv 0 \bmod 4$ and $28 \equiv 1$ $\bmod 9$.
- If a is even and divisible by 3 , then $a^{36} \equiv 0 \bmod 36$.

Solution for b: For $a^{36}-1$ to be a prime number, it must be positive; thus $a>1$. In this case, both $a^{18}-1$ and $a^{18}+1$ are bigger than 1 . Thus the factorization $a^{36}-1=\left(a^{18}-1\right)\left(a^{18}+1\right)$ implies that $a^{36}-1$ is not prime.

Problem 3 (10 points). Recall that the sum of positive divisors $\sigma(n)$ of a natural number n with prime factorization $p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$ with $p_{1}<\cdots<p_{r}$ equals

$$
\prod_{i=1}^{r} \frac{p^{k_{i}+1}-1}{p_{i}-1}
$$

Give a similar formula for

$$
\sum_{0<d \mid n} d^{2} .
$$

Solution: The set of divisors of n is $\left\{p_{1}^{l_{1}} \cdots p_{r}^{l_{r}}: 0 \leq l_{i} \leq k_{i}\right\}$. Thus

$$
\begin{aligned}
\sum_{0<d \mid n} d^{2} & =\sum_{0 \leq l_{1} \leq k_{1}} \cdots \sum_{0 \leq l_{r} \leq k_{r}}\left(p_{1}^{l_{1}} \cdots p_{r}^{l_{r}}\right)^{2} \\
& =\prod_{i=1}^{r} \sum_{l_{i}=0}^{k_{i}} p^{2 l_{i}} \\
& =\prod_{i=1}^{r} \frac{\left(p^{2}\right)^{l_{i}+1}-1}{p_{i}^{2}-1}
\end{aligned}
$$

