Solutions for first midterm

Lennart Meier

October 10, 2019

In the solutions, I do not give all possible approaches, but just one or two. Please write to me if you find any typos or have other remarks.

Problem 1 (8 points). Determine all odd primes p such that

$$
x^{2} \equiv 13 \quad \bmod p
$$

has a solution with $x \in \mathbb{Z}$.
More precisely: Find an $n>1$ and $a_{1}, \ldots, a_{r} \in \mathbb{Z}$ such that $x^{2} \equiv 13 \bmod p$ has a solution if and only if $p \equiv a_{i} \bmod n$ for some $1 \leq i \leq r$.

There is a solution (namely $x=0$) if $p=13$. We note that $p=13$ iff $p \equiv 0 \bmod 13$.
Now assume that $p \neq 13$ is an odd prime. There is a solution of $x^{2} \equiv 13 \bmod p$ iff $\left(\frac{13}{p}\right)=1$. By quadratic reciprocity, we have $\left(\frac{13}{p}\right)=\left(\frac{p}{13}\right)$ as $13 \equiv 1 \bmod 4$. Thus $x^{2} \equiv 13 \bmod p$ has a solution iff p is a quadratic residue $\bmod 13$ (or $p=13$).

The quadratic residues mod 13 are $\pm 1, \pm 3$ and ± 4 as a quick claculation shows. Thus, the p we are searching for are those that are congruent to $0, \pm 1, \pm 3$ or ± 4 modulo 13 .

Problem 2 (10 points). Decide for the following three congruences whether there are solutions. (Hint: You might want to determine first whether the numbers 101, 91 and 9991 are prime.)
(a) $x^{2} \equiv 91 \bmod 101$
(b) $x^{2} \equiv 5 \bmod 91$
(c) $x^{2} \equiv 2 \bmod 9991$
a) 101 is prime (not divisible by $2,3,5$ and 7). We compute:

$$
\left(\frac{91}{101}\right)=\left(\frac{101}{91}\right)=\left(\frac{101}{7}\right)\left(\frac{101}{13}\right)=\left(\frac{3}{7}\right)\left(\frac{10}{13}\right)=(-1) \cdot 1=-1
$$

Here we use quadratic reciprocity for Jacobi symbols and that we have computed the quadratic residues modulo 7 and 13 before. (For the last step, you could of course also use quadratic reciprocity again.)
b) Note $91=7 \cdot 13$. If $x^{2} \equiv 5 \bmod 91$ has a solution, then $x^{2} \equiv 5 \bmod 13$ has a solution as well. But 5 is not a quadratic residue modulo 13 as noted above. Thus, there is no solution.
c) We note $9991=10000-9=100^{2}-3^{2}=97 \cdot 103$. The numbers 97 and 103 are primes. Thus the Chinese Remainder Theorem implies that $x^{2} \equiv 2 \bmod 9991$ has a solution if and only if $x^{2} \equiv 2 \bmod 97$ and $x^{2} \equiv 2 \bmod 103$ have solution. As $97 \equiv 1 \bmod 8$ and $103 \equiv-1 \bmod 8$, we know that 2 is a quadratic residue modulo 97 and 103 . Thus, $x^{2} \equiv 2 \bmod 9991$ also has a solution. (Alternatively, one can use the formula for the Jacobi symbol $\left(\frac{2}{9991}\right)$.)

Problem 3 (12 points). Let p be an odd prime.
(a) Show that $1^{k}+2^{k}+\cdots+(p-1)^{k} \equiv-1 \bmod p$ if $(p-1) \mid k$.
(b) Let $\operatorname{gcd}(k, p-1)=1$. Show that for every $a \in \mathbb{Z}$, there is an $x \in \mathbb{Z}$ with $x^{k} \equiv a \bmod p$ and that any two such x are congruent to each other modulo p.
(c) Show that $1^{k}+2^{k}+\cdots(p-1)^{k} \equiv 0 \bmod p$ if $\operatorname{gcd}(p-1, k)=1$.
a) Write $k=(p-1) l$. By Fermat's little theorem, we obtain $a^{p-1} \equiv 1 \bmod p$ for every a not divisible by p and thus $a^{k}=\left(a^{p-1}\right)^{l} \equiv 1^{l}=1 \bmod p$. Thus,

$$
1^{k}+\cdots(p-1)^{k} \equiv 1+\cdots+1=(p-1) \equiv-1 \bmod p .
$$

b) If $a \equiv 0 \bmod p$, the condition becomes $x^{k} \equiv 0 \bmod p$, i.e. $p \mid x^{k}$. By Euclid's lemma, this is true if and only if $x \equiv 0 \bmod p$. Thus assume a not divisible by p.

High-brow solution: The problem is equivalent to the following statement: For each $[a] \in$ $(\mathbb{Z} / p)^{\times}$, there is a unique $[x] \in(\mathbb{Z} / p)^{\times}$such that $[x]^{k}=[a]$. By the existence of a primitive root we know $(\mathbb{Z} / p)^{\times} \cong \mathbb{Z} /(p-1)$ as abelian groups. Thus, the problem is equivalent to: For each $[b] \in \mathbb{Z} /(p-1)$ is there a unique $[c] \in \mathbb{Z} /(p-1)$ with $[k][c]=[b]$. This is true, as $[k]$ is invertible in $\mathbb{Z} /(p-1)$ and thus the unique solution is $[c]=[b][k]^{-1}$.

Alternative lower-brow solution: Let b be a primitive root modulo p. Thus $a \equiv b^{m} \bmod p$ for some integer p. Choose $d, e \in \mathbb{Z}$ with $d k+e(p-1)=m$ (which is possible as $\operatorname{gcd}(k, p-1)=1)$. Set $x=b^{d}$. Then $x^{k}=b^{d k}=b^{m-e(p-1)}$. Note that $b^{e(p-1)} \equiv 1 \bmod p$ as $b^{p-1} \equiv 1 \bmod p$ by Fermat's theorem. Thus $x^{k}=x^{k} \cdot 1 \equiv b^{m} \equiv a \bmod p$. This shows existence. For uniqueness suppose that $x_{1}^{k} \equiv a \equiv x_{2}^{k} \bmod p$. Suppose $x_{1} \equiv b^{d_{1}} \bmod p$ and $x_{2} \equiv b^{d_{2}} \bmod p$. As b has order $(p-1)$, we see that $k d_{1} \equiv k d_{2} \bmod (p-1)$. Because k is relative prime to $(k-1)$, it follows that $d_{1} \equiv d_{2} \bmod (p-1)$. As $b^{p-1} \equiv 1 \bmod p$, it follows that $x_{1} \equiv b^{d_{1}} \equiv b^{d_{2}} \equiv x_{2}$.
c) For $1 \leq x \leq p-1$, let $a(x)$ be the remainder of x^{k} if dividing by p. Part (b) implies that

$$
\{1, \ldots, p-1\} \rightarrow\{1, \ldots, p-1\}, \quad x \mapsto a(x)
$$

is a bijection. Thus,

$$
\begin{aligned}
1^{k}+\cdots+(p-1)^{k} & \equiv a(1)+\cdots a(p-1) \quad \bmod p \\
& =1+\cdots+(p-1) \\
& =\frac{p(p-1)}{2} \\
& =\frac{p-1}{2} \cdot p
\end{aligned}
$$

This is clearly congruent to 0 modulo p.

