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Question 1.

a) We verify the defining properties of a filter. Since x0 /∈ ∅ it follows that ∅ /∈ F . Since x0 ∈ X it
follows that X ∈ F . Consider Y,Z ⊆ X and assume Y ⊆ Z and Y ∈ F . Then x0 ∈ Y and thus
also x0 ∈ Z which implies that Z ∈ F . Assume now that Y, Z ∈ F . Then x0 ∈ Y and x0 ∈ Z
thus x0 ∈ Y ∩ Z which means Y ∩ Z ∈ F . This proves that F is a filter. Now let X ′ ⊆ X be
arbitrary. Then either x0 ∈ X ′ or x0 /∈ X ′. In the first case holds X ′ ∈ F and in the second
holds X −X ′ ∈ F , thus F is an ultra filter.

b) We apply Zorn’s Lemma. Let P be the set of all filters on X containing F0. Introduce a poset
structure on A by inclusions. That is for two filters F1,F2 ∈ P define F1 ≤ F2 exactly when
F1 ⊆ F2. That this is indeed a poset follows trivially from the fact that set inclusion is a
reflexive, anti-symmetric, and transitive relation. We need to verify that P is not empty and
that it satisfies the chain condition. That P is not empty is clear since evidently F0 ∈ P . Now
let {Fi}i∈I be a chain in P . Let F = ∪iFi. If F is in P then it is clearly an upper bound of
the chain. Clearly F0 ⊆ F since F0 ⊆ Fi for all i ∈ I. Thus we only need to verify that F is a
filter. Indeed, if ∅ ∈ F then ∅ ∈ Fi for some i ∈ I, but this is not the case since Fi is a filter.
Certainly X ∈ F since X ∈ Fi for all i ∈ I. Let now Y,Z ⊆ X and assume Y ⊆ Z and Y ∈ F .
Then Y ∈ Fi for some i ∈ I and since Fi is a filter also Z ∈ Fi. Thus Z ∈ F . Now assume
that Y,Z ∈ F . Thus Y ∈ Fi and Z ∈ Fj for some i, j ∈ I. Since {Fi}i∈I is a chain we can
assume without loss of generality that Y,Z ∈ Fi. But then Y ∩ Z ∈ Fi and thus Y ∩ Z ∈ F .
Thus F is a filter, as needed. We conclude thus that there exists a maximal element in P . Such
a maximal element, by definition, is a filter F containing F0 which is maximal with respect to
inclusion, as required.

c) Since N − ∅ is not finite it follows that ∅ /∈ Fcof . Since N − N = ∅ is finite it follows that
N ∈ Fcof . Let A,B ∈ Fcof . Then

N− (A ∩B) = N ∩ (A ∩B)c = N ∩ (Ac ∪Bc) = (N ∩Ac) ∪ (N ∩Bc) = (N−A) ∪ (N−B)

and since both N−A and N−B are finite it follows that N−(A∩B) is finite, thus A∩B ∈ Fcof .
Now assume B ∈ Fcof and B ⊆ A. Then

N−A ⊆ N−B

and since N−B is finite so is N−A thus A ∈ Fcof . Thus Fcof is a filter. It is not a principal
filter. To verify that it is sufficient to notice that for every n ∈ N there exists a set An ∈ Fcof

such that n /∈ An. One choice for such an An is An = N− {n}.

d) Consider the filter Fcof on N. By what we have proved there exists a maximal filter F containing
Fcof . This filter is non-principal since it is of course still true that for every n ∈ N there is a
set An ∈ F with n /∈ An.

Question 2.

a) Consider ψt = ∀x∀y∀z(((x ≤ y) ∧ (y ≤ z)) → (x ≤ z)) (which holds if, and only if, ≤M is
transitive), ψas = ∀x∀y(((x ≤ y) ∧ (y ≤ x)) → (x = y)) (which holds if, and only if, ≤M is
anti-symmetric), and ψr = ∀x(x ≤ x) (which holds if, and only if, ≤M is reflexive). Thus the
desired theory is Tpos = {ψt, ψas, ψr}.
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b) Let k ∈ N. Consider the formula ψk(a1, · · · , an) which is equal to the conjunction of all expres-
sions of the form ¬(ai ≤ aj) with 1 ≤ i, j ≤ k and i 6= j. What ψk expresses about the variables
a1, · · · , ak is that they form an anti-chain. Consider also the formula ρk(b, a1, · · · , ak) = (b =
a1)∨ (b = a2)∨ · · · ∨ (b = ak) which simply expresses that b is equal to one of the given ai. One
possibility for the desired sentence is now: ϕk = ∀x1∀x2 · · · ∀xk∀xk+1(ψk+1(x1, · · · , xk+1) →
ρ(x1, · · · , xk+1)). If there is a anti-chain with more than k elements then for k + 1 differ-
ent elements x1, · · · , xk, xk+1 from such an anti-chain holds ψk+1(x1, · · · , xk, xk+1) but not
ρk+1(x1, x2, · · · , xk+1). As desired.

c) Consider the theory S = Tpos ∪ {¬ϕk | k ≥ 1} where ψk is as in 2). Any model M of S is a
poset (since Tpos ⊆ S) and its width can’t be finite since if it were finite, say equal to k, then
M |= ϕk would hold while M |= ¬ϕm for all m ∈ N. Conversly, any poset M with infinite
width arises as a model of S since for such a poset holds M |= Tpos (since M is a poset) and
for all m ∈ N holds M |= ¬ϕk since M has anti-chains of arbitrary length.

d) Such a theory T ′ does not exist. To prove that assume to the contrary that T ′ exists. Consider
the theory T ′′ = T ′∪{¬ϕk | k ≥ 1}. T ′′ is clearly inconsistent (since a model of it is a poset with
finite width (since T ′ ⊆ T ′′), say equal to k, while at the same time holds ¬ϕk, namely the poset
contains anti-chains larger than k. Clearly a contradiction. By the Compactness Theorem there
exists a finite inconsistent theory S′ ⊆ T ′′. S′ is thus contained in S′′ = T ′ ∪{¬ϕk | 1 ≤ k ≤ n}
for some n ∈ N. However, we can easily find models for S′′. Indeed, consider a set with n + 1
elements U = {u0, u1, · · · , un} with the reflexive relation I as the poset structure. Then U has
finite width equal to n+ 1 thus is a model of S′′. But then, since S′ ⊆ S′′ it follows that S′ is
also consistent which is a contradiction since S′ is inconsistent.

Question 3.

a) We have to make sure that the definition does not depend on the choice of set X. Thus, let X
and Y be sets with |X| = |Y |. We have to verify that |Xbij | = |Ybij |. Since |X| = |Y | there
is a bijective function f : X → Y , thus f has an inverse f−1 : Y → X. We now construct a
function g : Xbij → Ybij and prove that it is bijective, thus proving that |Xbij | = |Ybij |. For
a given ρ ∈ Xbij , that is a bijective function ρ : X → X, let g(ρ) be the function f ◦ ρ ◦ f−1.
Then g(ρ) is a function from Y to Y which is bijective since it is a composition of bijective
functions. Thus g(ρ) ∈ Ybij . To construct the inverse of g consider h : Ybij → Xbij given by, for
each τ ∈ Ybij , by h(τ) = f−1 ◦ τ ◦ f . As before h(τ) ∈ Xbij . Now, for any ρ ∈ Xbij holds

h(g(ρ)) = h(f ◦ ρ ◦ f−1) = f−1 ◦ f ◦ ρ ◦ f−1 ◦ f = ρ

and similarly for each τ ∈ Ybij holds g(h(τ)) = τ . Thus h = g−1 as required.

b) Let f : N→ N. We define ψ(f) : N→ N for each n ∈ N as follows:

ψ(f)(n) = f(0) + f(1) + · · ·+ f(n) + n.

We need to prove that ψ(f) is injective and then to prove that ψ is injective. To show that
ψ(f) is injective assume to the contrary it is not. Thus there are natural numbers m,n ∈ N
such that n < m and ψ(f)(n) = ψ(f)(m). But then we have that f(0) + · · · + f(n) + n =
f(0) + · · ·+ f(m) +m which implies (since n < m) that 0 = f(n+ 1) + · · ·+ f(m) + (m− n).
But all summands are non-negative and m− n > 0 thus the equality is impossible. Thus ψ(f)
is indeed injective for all functions f : N→ N. Now assume f1, f2 ∈ NN are different functions
and let n0 be the smallest natural number for which f1(n0) 6= f2(n0), without loss of generality
assume f1(n0) < f2(n0). Then

ψ(f1)(n0)− ψ(f2)(n0) = f1(n0)− f2(n0) < 0

thus ψ(f1) and ψ(f2) are different functions, so ψ is injective.

c) From the injective map ψ and the given injective map ϕ we deduce, by definition, that |NN| ≤
|Ninj | and |Ninj | ≤ |Nbij |. Since Ninj ⊆ NN and Nbij ⊆ Ninj the reverse inequalities hold



and thus, by the Cantor-Shroeder-Berenstein Theorem, we conclude that |NN| = |Ninj | and
|Ninj | = |Nbij |. Now since the definition of ω! is independant of the choice of set we can
calculate:

ω! = |Nbij | = |Ninj | = |NN| = 2|N| = 2ω.

The equality preceeding the last one follows from the general property that for any infinite set
A holds |A||A| = 2|A| as is proven in the book (this depends on the axiom of choice).

Question 4.

a) This statement is correct. To prove it we use Zermello’s Well Ordering Theorem that states
that any set can be well ordered (incidentally, this theorem is equivalent to the axiom of choice).
Consider the set A = R+−{0}. According to Zermello’s Theorem there exist a poset structure
≤2 on A such that A is well ordered. Now define an order ≤1 on R+ as follows: for x, y ∈ R+

with x, y > 0 define x ≤1 y if, and only if, x ≤2 y. And for any z ∈ R+ define 0 ≤1 z. It is
trivial that ≤1 well orders R+ and clearly 0 is the smallest element in that order.

b) This statement is not correct. For a counter example consider the set N with the usual order,
which is well-ordered (this is incidentally equivalent to the principal of induction). Consider
the element 0 ∈ N. Then 0↑ = {1, 2, · · · , n, · · · } which is clearly order isomorphic to N (by
the function N→ 0↑ which sends n to n+ 1) . Of course, there was nothing special about the
number 0 and any other number would have worked equally well.

c) This statement is incorrect. We give two counter examples. First consider the set {0} with just
one element and the trivial well order structure on it. Then 0 is a limit element and the greatest
element. For a slightly less trivial counter example consider the set N as a well order as in 2)
and a new symbol ∞. Define on N ∪ {∞} a poset structure which agrees with the usual order
on N and in which ∞ is a largest element. But then ∞ is a limit element since any element of
the form n+ 1 for n ∈ N is again a natural number thus different from ∞.


