## Retake Representations of finite groups

July 15, 2019

- Write your name on every sheet.
- The book may be consulted.
- In each item you can use the results from previous items, even if you have not solved them.
- Motivate your solutions!
- There are 11 pts to be earned. Success!

1. Let $G$ be the group generated by three elements $a, b, c$ subject to the relations $a^{3}=b^{3}=c^{2}=e, a b=b a, c a c=a^{2}, c b c=b^{2}(e$ is the neutral element in $G)$. The group $G$ has order 18 and each element can be written in the form $a^{i} b^{j} c^{k}$ with $i, j \in\{0,1,2\}, k \in\{0,1\}$.
(a) $(1 / 2 \mathrm{pt})$ Determine the six conjugation classes of $G$.
(b) (1 pt) Determine the one-dimensional representations of $G$.
(c) $(1 / 2 \mathrm{pt})$ Show that all other irreducible representations of $G$ have dimension 2.
(d) $(1 / 2 \mathrm{pt})$ Let $\omega=e^{2 \pi i / 3}$ and define the matrices

$$
A=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Prove that the map $\rho: G \rightarrow G L(2, \mathbb{C})$ given by $\rho\left(a^{i} b^{j} c^{k}\right)=A^{i} B^{j} C^{k}$ for $0 \leq i, j \leq 2$ and $k=0,1$ is a two-dimensional representation of $G$. Compute the character of $\rho$.
(e) $(1 / 2 \mathrm{pt})$ Prove that $\rho$ is irreducible.
(f) $(1 \mathrm{pt})$ Compute the character table of $G$ (hint: use a variation of the construction in the previous item)
2. We are given the group $A_{5}$ of even permutations of 5 objects.
(a) $(1 / 2 \mathrm{pt})$ Give the conjugation classe of $A_{5}$.

Let $U$ be the 5 -dimensional complex vector space of linear forms (homogeneous linear polynomials) in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. Define the representation $\pi: A_{5} \rightarrow G L(U)$ by

$$
\pi(\sigma): L\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mapsto L\left(x_{\sigma(1)}, \ldots, x_{\sigma(5)}\right)
$$

for every $L \in U$.
Let $V$ be the complex 10-dimensional vectorspace van of poynomials in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ spanned by $x_{i} x_{j}$ with $1 \leq i<j \leq 5$ (quadratic monomials with distinct indices) Define the representation $\rho: A_{5} \rightarrow G L(V)$ by

$$
\rho(\sigma): Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mapsto Q\left(x_{\sigma(1)}, \ldots, x_{\sigma(5)}\right)
$$

for all $Q \in V$.
(b) ( $1 / 2 \mathrm{pt})$ Determine the character $\psi$ of $\pi$ and give it in a table.
(c) $(1 / 2 \mathrm{pt})$ Determine the character $\chi$ of $\rho$ and give it in a table.
(d) ( 1 pt ) Show that $V$ has a $A_{5}$-invariant subspace $W$ of dimension 5 $\mathbb{C} A_{5}$-isomorphic to $U$. Do this by displaying a basis of $W$.
(e) $(1 / 2 \mathrm{pt})$ Show that $\chi-\psi$ is the character of an irreducible representation without using the character table of $A_{5}$.
3. In this problem $G$ is a finite group and $|G|$ denotes the order of $G$. We fix an irreducible character $\chi$ of $G$ and consider the element $X=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) g$ in the group algebra $\mathbb{C} G$. We let $U$ be a $\mathbb{C} G$-module and denote its character by $\psi$. Moreover we define the $\mathbb{C}$-linear map $\xi: U \rightarrow U$ by $\chi(v)=X v$ for all $v \in U$.
(a) $(1 / 2 \mathrm{pt})$ Show that the trace of the $\mathbb{C}$-linear map $\xi$ equals $\langle\psi, \chi\rangle$.
(b) $(1 / 2 \mathrm{pt})$ Prove that $h^{-1} X h=X$ for every $h \in G$.
(c) $(1 / 2 \mathrm{pt})$ Prove that $\xi$ is a $\mathbb{C} G$-homomorphism.
(d) $(3 / 2 \mathrm{pt})$ For this sub-item assume that $U$ is an irreducible $\mathbb{C} G$-module.
i. Prove that there is a $\lambda \in \mathbb{C}$ such that $\xi(v)=\lambda v$ for all $v \in U$.
ii. Prove that $\lambda=0$ if $\psi \neq \chi$.
iii. Compute $\lambda$ if $\psi=\chi$.
(e) $(1 / 2 \mathrm{pt})$ Prove that $\xi(\xi(v))=\frac{1}{\chi(1)} \xi(v)$ for every $v \in U$.
(f) $(1 / 2 \mathrm{pt})$ Prove that $X^{2}=\frac{1}{\chi(1)} X$ holds in the group algebra $\mathbb{C} G$.

