Midterm exam Topologie en Meetkunde (WISB341). A. Henriques, Mar 2012. Do not simply provide answers: justify all your assertions.

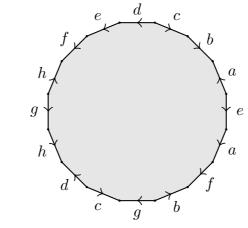
Problem 1 State the definition of a manifold.

Prove that if M and N are manifolds, then their product $M \times N$ is also a manifold.

Solution: A manifold a space X such that every point $x \in X$ has a neighborhood that is homeomorphic to \mathbb{R}^n . Given a point $(x, y) \in M \times N$, pick neighborhoods $U \subset M$ of x and $V \subset N$ of y such that $U \cong \mathbb{R}^m$ and $V \cong \mathbb{R}^n$. Then $U \times V \cong \mathbb{R}^{m+n}$ is a neighborhood of (x, y).

Problem 2 State the classification theorem for compact surfaces.

Let Σ be the surface obtained by glueing the sides of a regular 16-gon according to the following pattern:



To which surface in the classification is Σ homeomorphic?

Solution: A compact surface is homeomorphic to either S^2 , a connected sum of copies of T^2 , or a connected sum of copies of P^2 , and those are pairwise non-homeomorphic. The surface Σ is orientable and has Euler characteristic given by 3-8+1=-4. It is therefore homeomorphic to $T^2 # T^2 # T^2.$

Problem 3 Given two natural numbers $m < n$, the product $S^m \times S^n$ of the <i>m</i> -dimensional sphere	[3pt]
with the n -dimensional sphere is a CW-complex with four cells.	
What are the dimensions of those cells?	[1pt]
Describe the m -skeleton of that CW complex.	[1pt]
Describe the n -skeleton of that CW complex.	[1pt]

Solution: The cells have dimensions 0, m, n, and m + n. The m-skeleton is S^m , and the *n*-skeleton is $S^n \vee S^m$.

Problem 4 State the definition of homotopy equivalence. [2pt] [1pt] Prove that if X and Y are two spaces that are homotopy equivalent, then the products $X \times S^1$ and [1pt] $Y \times S^1$ are also homotopy equivalent.

Solution: $X \approx Y$ if there are maps $f: X \to Y$, $g: Y \to X$, such that $f \circ g \sim 1_Y$ and $g \circ f \sim 1_X$. The maps $f \times 1_{S^1} : X \times S^1 \to Y \times S^1$, and $g \times 1_{S^1} : Y \times S^1 \to X \times S^1$ satisfy $(f \times 1_{S^1}) \circ (g \times 1_{S^1}) \sim 1_{Y \times S^1}$ and $(g \times 1_{S^1}) \circ (f \times 1_{S^1}) \sim 1_{X \times S^1}$, and thus form a homotopy equivalence between $X \times S^1$ and $Y \times S^1$.

[3pt] [1pt]

[2pt] [1pt]

[1pt]

[2pt]

Problem 5 Consider a triangulation of $T^2 \# T^2$ such that at every vertex, exactly seven triangles [3pt] meet. How many triangles are there in total in that triangulation?

Solution: The Euler characteristic F - E + V is equal to $\chi(T^2 \# T^2) = -2$. We have $E = \frac{3}{2}F$ and $V = \frac{3}{7}F$, therefore $\chi(T^2 \# T^2) = F(1 - \frac{3}{2} + \frac{3}{7}) \Rightarrow F = (-2)/(1 - \frac{3}{2} + \frac{3}{7}) = 28$.

Problem 6 The surface $T^2 \# T^2$ admits a CW complex structure whose 1-skeleton is the following graph:

Describe an attaching map $f: S^1 \to \Gamma$ such that $\Gamma \cup_f e_2 = T^2 \# T^2$.

Solution: If the 1-skeleton was $S^1 \vee S^1 \vee S^1 \vee S^1$, then the attaching map would be given by the word $aba^{-1}b^{-1}cdc^{-1}d^{-1}$. Calling the extra horizontal edge in Γ by the letter e, the attaching map is then given by $aba^{-1}b^{-1}ecdc^{-1}d^{-1}e^{-1}$.

Questions for the oral exam of *Topologie en Meetkunde*. June 2012. Each students picks three questions at random, out of which he/she selects two that are then presented at the board. The student has 30 minutes to prepare, and 30 minutes for the presentation.

• Define the notion of orientability. Illustrate with examples of one, two, and three dimensional manifolds.

• State the classification theorem for surfaces, and explain the main steps of its proof.

• Define the notion of CW-complex, with particular emphasis on the topology. Illustrate with one and two dimensional examples.

• Define the notion of homotopy equivalence and illustrate it with a couple of examples. Prove that it is an equivalence relation.

• Define the homotopy group $\pi_n(X)$ of a topological space X and prove that they are invariant under homotopy equivalences.

• Explain how to read off the fundamental group of a CW-complex, and sketch the proof. Illustrate with some examples.

• State the cellular approximation theorem, and use it to prove that the inclusion of the (n + 1)-skeleton of some space into the whole space induces an isomorphism of *n*-th homotopy groups.

• Define the notion of cover of a topological space, and prove that covers satisfy the path lifting property.

• Define universal covers and explain their relation to the fundamental group. Illustrate with examples.

• Define the homology groups of a topological space (the definition depends on the fact that $d \circ d = 0$; prove that fact), and illustrate with examples.

[2pt]