Topology and Geometry B, Retake (August 27, 2010)

Note: Please motivate/prove each of your answers.

Exercise 1. Let T be the torus. Is it true that for any topological space X for which there exists a continuous bijection $f: X \longrightarrow T$, the fundamental group of X is isomorphic to \mathbb{Z}^2 ? (1p)

Exercise 2. Let A be a closed subset of a topological space X and let $r : X \longrightarrow A$ be a continuous map. Consider the statements:

- (i) r is a retraction.
- (ii) For all $a \in X$, $r_* : \pi(X, a) \longrightarrow \pi(A, a)$ is injective.

Which of the implications $(i) \Longrightarrow (ii)$ and $(ii) \Longrightarrow (i)$ holds true? (2p)

Exercise 3. Let $X = \mathbb{R}^2 - \{(0,0)\}, x = (1,0) \in X$ and consider

 $\gamma_1, \gamma_2: [0,1] \longrightarrow X$

 $\gamma_1(t) = (\cos(4\pi t), 2\sin(4\pi t)), \ \gamma_2(t) = (\cos(4\pi t), (2t-1)\sin(4\pi t)).$

Show that:

- (i) γ_1 is homotopic to a constant map but γ_1 is not path-homotopic to the constant path. (2p)
- (ii) γ_2 is path-homotopic to the constant path. (1p)

Exercise 4. Let A be the one-dimensional space from Figure 1. Consider also the space X which is the connected sum of a Moebius band and a torus (Figure 2).

- (i) Compute the fundamental group of A and show the generators on the pictures. (1p)
- (ii) Show how one can obtain X from a disk by gluing some of the points on the boundary of the disk. (1p)
- (iii) Compute the Euler characteristic of X. (1p)
- (iv) Compute the fundamental group of X. (1p)

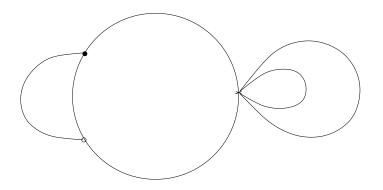


Figure 1:

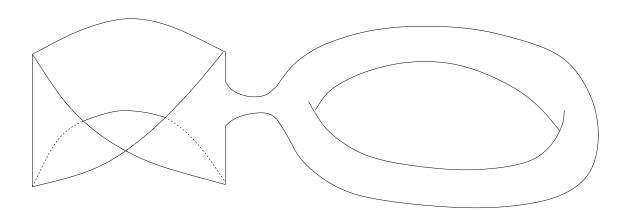


Figure 2: