Worked exam Differentiable manifolds, January 12 2009, 9:00-12:00

1. Given a map $f: M \rightarrow N$, prove that $F: M \rightarrow M \times N, F(p)=(p, f(p))$ is an embedding. According to Prop. 4.7 of Ch. 1 it suffices to prove that F is an immersion and a homeomorphism onto its image. Denote the image of f by Γ. The map $p \in M \mapsto(f, f(p)) \in \Gamma$ is continuous and bijective. Its inverse is the restriction to Γ of the projection $\pi_{M}: M \times N \rightarrow M$, and hence also continuous. So F maps M homeomorphically onto Γ. Since $\pi_{M} F$ is the identity, so is $D_{p}\left(\pi_{M} F\right)=D_{F(p)} \pi_{M} \circ D_{p} F$ and hence $D_{p} F$ is injective. So F is an immersion as well.
2. Let M be a compact nonempty oriented m-manifold. Construct an m-form on M which is not exact. Choose an oriented chart (U, κ) for M with the property that $\kappa(U)$ is the unit ball of \mathbb{R}^{m}. Let $f: \mathbb{R}^{m} \rightarrow[0,1]$ be a smooth function that is not identically zero, but is zero outside the closed ball B centered at 0 of radius $\frac{1}{2}$. Then the integral $\int_{\mathbb{R}^{m}} f\left(x^{1}, \ldots, x^{m}\right) d x^{1} \ldots d x^{m}$ converges and is a positive real number. Now let ω be the m-form on M characterized by the property that on U it is equal to $\kappa^{*}\left(f d x^{1} \wedge \cdots \wedge d x^{m}\right)$ and is zero on $M-U$. (A formal proof that this ω is smooth goes as follows: B is compact, κ is a homeomorphism of U onto $\kappa(U)$ and so $\kappa^{-1} B$ is also compact. But M is Hausdorff and so this implies that $M-\kappa^{-1} B$ is open in M. Hence M is covered by its two open subsets U and $M-\kappa^{-1} B$. Since ω is smooth on either subset (it is identically zero on $\left.M-\kappa^{-1} B\right), \omega$ is smooth.) Now by definition $\int_{M} \omega=\int_{\mathbb{R}^{m}} f\left(x^{1}, \ldots, x^{m}\right) d x^{1} \cdots d^{m}>0$. Stokes' theorem then precludes this form to be exact, for if it were and $\omega=d \eta$, then that theorem says that $\int_{M} \omega=\int_{\partial M} \eta$ and this is zero since $\partial M=\emptyset$.
3. Let V be a vector field on a manifold M. We say that a differential form α on M is V-invariant if it is killed by the Lie derivative $\mathcal{L}_{V}: \mathcal{L}_{V}(\alpha)=0$.
3a. Prove that the exterior product of two V-invariant forms is V-invariant. If α and β are differential forms on M, then we have a Leibniz rule asserting that $\mathcal{L}_{V}(\alpha \wedge \beta)=$ $\mathcal{L}_{V}(\alpha) \wedge \beta+\alpha \wedge \mathcal{L}_{V}(\beta)$. So if $\mathcal{L}_{V}(\alpha)=0$ and $\mathcal{L}_{V}(\beta)=0, \mathcal{L}_{V}(\alpha \wedge \beta)=0$.
3b. Suppose that V generates a flow $\left(H_{t}: M \rightarrow M\right)_{t \in \mathbb{R}}$. Prove that a differential form α on M is V-invariant if and only if $H_{t}^{*} \alpha=\alpha$ for all $t \in \mathbb{R}$. Assigning to $t \in \mathbb{R}$ the form $H_{t}^{*} \alpha$ defines a function F from \mathbb{R} to the vector space of differential forms. Now, $H_{t}^{*} \alpha$ is constant in t if and only if the derivative of F with respect to t is constant equal to zero. The derivative in $t=0$ is $\mathcal{L}_{V} \alpha$. Since \mathcal{L}_{V} commutes with H_{t}^{*}, its derivative in $t=t_{0}$ is $\mathcal{L}_{V} H_{t_{0}}^{*} \alpha=H_{t_{0}}^{*}\left(\mathcal{L}_{V} \alpha\right)$. The latter is zero if and only if $\mathcal{L}_{V} \alpha=0$.
3c. Describe the differential forms on \mathbb{R}^{m} that are invariant under all the coordinate vector fields $\frac{\partial}{\partial x^{i}}, i=1, \ldots, m$. The vector field $\frac{\partial}{\partial x^{i}}$ generates the flow that assigns to t the translation in t times the basis vector $e_{i} \in \mathbb{R}^{m}$. So invariance under all the coordinate vector fields amounts to translation invariance. This means: constant coefficients: such a k-form is a \mathbb{R}-linear combination of the forms $d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}$, where $1 \leq i_{1}<\cdots<$ $i_{k} \leq m$.
3d. Consider a product manifold $S^{1} \times N$ (so N a manifold). A point of $S^{1} \times N$ is denoted $\left(e^{i \tau}, x\right)$ with $\tau \in \mathbb{R} /(2 \pi \mathbb{Z})$ and $x \in M$. So $\frac{d}{d \tau}$ defines a vector field on this manifold. Determine the p-forms α on $S^{1} \times N$ that are invariant under this vector field. (Do this in terms of the decomposition $\alpha=\alpha^{\prime}+d \tau \wedge \alpha^{\prime \prime}$, with α^{\prime} and $\alpha^{\prime \prime}$ forms of degree p resp. $p-1$ that depend on τ.) We show that α is nvariant under $\frac{d}{d \tau}$ if and only if α^{\prime} and $\alpha^{\prime \prime}$ are independent of τ. This can be proved as in (3c) (so by means of an argument based on (3b)) or we can proceed as follows. Let us write d_{N} for the N-component of the exterior
derivative. Then

$$
d \alpha=d_{M} \alpha^{\prime}+d \tau \wedge\left(\frac{\partial \alpha^{\prime}}{\partial \tau}-d_{N} \alpha^{\prime \prime}\right)
$$

and so $\iota_{d / d \tau} d \alpha=\frac{\partial \alpha^{\prime}}{\partial \tau}+d_{N} \alpha^{\prime \prime}$. We also see that

$$
d \iota_{d / d \tau} \alpha=d \alpha^{\prime \prime}=d_{N} \alpha^{\prime \prime}+d \tau \wedge \frac{\partial \alpha^{\prime \prime}}{\partial \tau}
$$

It follows that the $\operatorname{sum} \mathcal{L}_{d / d \tau} \alpha=\iota_{d / d \tau} d \alpha+d \iota_{d / d \tau} \alpha$ equals $\frac{\partial}{\partial \tau} \alpha^{\prime}+d \tau \wedge\left(\frac{\partial}{\partial \tau} \alpha^{\prime}\right)$. This is identically zero if and only if each term is, meaning that both α^{\prime} and $\alpha^{\prime \prime}$ are independent of τ.
4. We regard a 2-form on a manifold M as an antisymmetric function on pairs of vector fields. Let α be a 1 -form on M.
4a. Prove if α is exact, then $V(\alpha(W))-W(\alpha(V))-\alpha([V, W])=0$. To say that α is exact means: $\alpha=d f$ for some $f: M \rightarrow \mathbb{R}$. Then $\alpha(V)=d \alpha(V)=V(f)$ and similarly for W. So $V(\alpha(W))-W(\alpha(V))=V W(f)-W V(f)=[V, W](f)=\alpha([V, W])$.
4c. Prove that if α is exact and f is a function on M, then $V(f \alpha(W))-W(f \alpha(V))-$ $f \alpha([V, W])=d f(V) \alpha(W)-d f(W) \alpha(V)$. According to the Leibniz rule, we have $V(f \alpha(W))=V(f) \alpha(W)+f V(\alpha(W))=d f(V) \alpha(W)+f \alpha(W)$ and likewise for $W(f \alpha(V))$. So

$$
\begin{gathered}
V(f \alpha(W))-W(f \alpha(V))=d f(V) \alpha(W)+f V(\alpha(W))-d f(W) \alpha(V)-f W \alpha(V)= \\
d f(V) \alpha(W)-d f(W) \alpha(V)+f \alpha([V, W])=(d f \wedge \alpha)(V, W)+f \alpha([V, W])
\end{gathered}
$$

4d. Prove that for general $\alpha, V(\alpha(W))-W(\alpha(V))-\alpha([V, W])=d \alpha(V, W)$. It is enough to verify this on a coordinate chart (U, κ). On that chart every 1 -form is written as $f_{1} d \kappa^{1}+\cdots+f_{m} d \kappa^{m}$ for certain functions f_{1}, \ldots, f_{m} on U. According to (4c) the assertion holds for every term $f_{i} d \kappa^{i}$. So it holds for α.
5. We give S^{2} its standard orientation. Denote by $\pi: S^{2} \rightarrow P^{2}$ is the usual projection to the projective plane which identifies antipodal pairs. Prove that for every 2-form α on P^{2}, we have $\int_{S^{2}} \pi^{*} \alpha=0$. We give two proofs, one lengthy, one short.

Long proof: Cover P^{2} by finitely many charts $\left(U_{i}, \kappa_{i}\right)$ with $\kappa\left(U_{i}\right)$ the unit ball and such that $\pi^{-1} U_{i}$ consists of two copies of U_{i} that are opposite with respect to the antipodal map. On only one of these copies the composite map $\kappa_{i} \pi$ is orientation preserving; denote that copy \tilde{U}_{i}. Then $\kappa_{i} \pi$ is on $-\tilde{U}_{i}$ orientation reversing and $\left\{\tilde{U}_{i}\right\}_{i} \cup\left\{-\tilde{U}_{i}\right\}_{i}$ covers S^{2}. We lift this covering to an oriented atlas by taking on \tilde{U}_{i} the chart $\kappa_{i} \pi$ and on $-\tilde{U}_{i}$ the chart $\sigma \kappa_{i} \pi$, where $\sigma\left(x^{1}, x^{2}\right)=\left(-x^{1}, x^{2}\right)$. We now prove that $\int_{S^{2}} \pi^{*} \alpha=0$ in case the support of α is contained in some U_{i} (this suffices for the general case then follows with the help of a partition of unity). For such α, let $f: \kappa\left(U_{i}\right) \rightarrow \mathbb{R}$ be such that $\alpha \mid U_{i}=$ $\kappa_{i}^{*}\left(f d x^{1} \wedge d x^{2}\right)$. Our definition prescribes that $\int_{\tilde{U}_{i}} \pi^{*} \alpha=\int_{\kappa\left(U_{i}\right)} f\left(x^{1}, x^{2}\right) d x^{1} d x^{2}$ and that $\int_{-\tilde{U}_{i}} \pi^{*} \alpha=\int_{\sigma \kappa\left(U_{i}\right)} \sigma f d x^{1} d x^{2}=\int_{\kappa\left(U_{i}\right)} f\left(-x^{1}, x^{2}\right) d x^{1} d x^{2}$. The last integral is (by the transformation formula) equal to $-\int_{\kappa\left(U_{i}\right)} f\left(x^{1}, x^{2}\right) d x^{1} d x^{2}$. Hence $\int_{S^{2}} \pi^{*} \alpha=0$.

Short proof: Let $\iota: S^{2} \rightarrow S^{2}, \iota(x)=-x$, be the antipodal involution. Since ι reverses orientation we have that for any 2 -form β on $S^{2}: \int_{S^{2}} \iota^{*} \beta=-\int_{S^{2}} \beta$. Now take $\beta:=\pi^{*} \alpha$. Then $\iota^{*} \beta=\iota^{*} \pi^{*} \alpha=(\pi \circ \iota)^{*} \alpha=\pi^{*} \alpha=\beta$ and hence $\int_{S^{2}} \beta=0$.

