Differentiable manifolds – Exam 2

- 1. Write your name and student number **clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books and class notes.
- 5. You are **not** allowed to consult colleagues, calculators, computers etc.

Some useful definitions and results

• **Definition**. A star shaped domain of \mathbb{R}^n is an open set $U \subset \mathbb{R}^n$ such that there is $p \in U$ with the property that if $q \in U$, then all the points in the segment connecting p and q are also in U, that is, there is p such that

$$(1-t)p+tq \in U$$
; for all $q \in U$ and all $t \in [0,1]$.

The Poincaré Lemma in full generality states

Theorem 1 (Poincaré Lemma). If U is (diffeomorphic to) a star shaped domain of \mathbb{R}^n then

$$H^k(U)=\{0\} \qquad \textit{for } k>0.$$

• **Definition**. An open cover \mathcal{U} of a manifold M is *fine* if any finite intersection of elements of \mathcal{U} is either empty or (diffeomorphic to) a disc.

With this definition, we have

Theorem 2 (Čech to de Rham). The Čech cohomology with real coefficients of any fine cover of M is isomorphic to the de Rham cohomology of M.

Questions

Exercise 1. Let V be a vector space.

- a) (0.5 pt) Let $\xi \in \wedge V^*$ be an odd form. Show that $\xi \wedge \xi = 0$.
- b) (0.5 pt) Give an example of an even form ξ such that $\xi \wedge \xi \neq 0$.
- b) (1 pt) Let $\xi \in V^* \setminus \{0\}$ and $\eta \in \wedge^k V^*$. Show that $\xi \wedge \eta = 0$ if and only if there is $\zeta \in \wedge^{k-1} V^*$ such that $\eta = \xi \wedge \zeta$.

Exercise 2. Let $\alpha \in \Omega^1(\mathbb{R}^2)$ be given by

$$\alpha = xdy$$

Compute the integral of α over

- a) (1 pt) The unit circle centered at the origin parametrized counterclockwise;
- b) (1 pt) The boundary of the triangle with vertices (0,0), (1,0) and (0,1) parametrized counterclockwise.

Exercise 3. (2 pt) Consider the form $\rho \in \Omega^2(\mathbb{R}^3 \setminus \{0\})$

$$\rho = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

- a) Show that $d\rho = 0$;
- b) Compute the integral of ρ over the 2-sphere of radius 2 in \mathbb{R}^3 centered at (0,0,1).
- c) Compute the integral of ρ over the 2-sphere of radius 2 in \mathbb{R}^3 centered at (0,0,3).
- d) Does ρ represent a nontrivial cohomology class in $\mathbb{R}^3 \setminus \{0\}$? Does ρ represent a nontrivial class in

$$\mathbb{R}^3 \setminus \{(0,0,x) : x \ge 0\}$$
?

Exercise 4 (2 pt). Let M be a manifold. Endow the bundle $TM \oplus T^*M$ with the bracket

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi,$$

where $X, Y \in \mathfrak{X}(M)$, $\xi, \eta \in \Omega^1(M)$ and [X, Y] is the Lie bracket of X and Y.

Given $\omega \in \Omega^2(M)$ and $X \in \mathfrak{X}(M)$ interior product gives $\iota_X \omega \in \Omega^1(M)$. Show that the following are equivalent:

1. For all $X, Y \in \mathfrak{X}(M)$ there is $Z \in \mathfrak{X}(M)$ such that

$$[X + \iota_X \omega, Y + \iota_Y \omega] = Z + \iota_Z \omega.$$

2. $d\omega = 0$.

Exercise 5. Compute the dimension of the degree 1 de Rham cohomology of

- a) $(1 \text{ pt}) \mathbb{R}^2 \setminus \{(0,0)\}.$
- b) (1 pt) $\mathbb{R}^2 \setminus \{(0,0),(1,0),\cdots,(n,0)\}$, where n is some positive integer.