Solutions to the final exam
 Questions

Exercise $\mathbf{1}(20 \mathrm{pt})$ Consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $F(x, y, z):=x^{2}+y^{2}-z^{2}$.
a) For which $c \in \mathbb{R}$ is $M_{c}:=F^{-1}(c)$ a smooth submanifold of \mathbb{R}^{3} ? Give a sketch of M_{c} for all $c \in \mathbb{R}$.
Solution: The derivative of F is given by $d_{(x, y, z)} F=(2 x, 2 y,-2 z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ and is surjective for all $(x, y, z) \neq 0$. So $(0,0,0) \in F^{-1}(0)$ is the only point where F is not a submersion, showing that $M_{c}=F^{-1}(c)$ is a smooth submanifold of \mathbb{R}^{3} for all $c \neq 0$. (Sketch: see last page of this file)
M_{0} is not a smooth submanifold, in fact it is not even a topological manifold! It is given by a cone, and a neighborhood of the tip of the cone can not be homeomorphic to a disc, for it becomes disconnected if you remove the tip itself.
b) Show that M_{1} is diffeomorphic to $S^{1} \times \mathbb{R}$ and that M_{-1} is diffeomorphic to $\mathbb{R}^{2} \coprod \mathbb{R}^{2}$.

Solution: $M_{1}=\left\{(x, y, z) \mid x^{2}+y^{2}=1+z^{2}\right\}$. Since $1+z^{2}$ is always positive, this is a union of circles as z varies. Explicitly, define $\varphi: S^{1} \times \mathbb{R} \rightarrow M_{1}$ by $\varphi(a, b, t):=\left(\sqrt{1+t^{2}} a, \sqrt{1+t^{2}} b, t\right)$ where $t \in \mathbb{R}$ and $(a, b) \in S^{1} \subset \mathbb{R}^{2}$ (seen as the unit circle). This is a smooth map because it is the restriction of the smooth map from $\mathbb{R} \times \mathbb{R}^{2}$ to \mathbb{R}^{3} given by the same formula. Define $\psi: M_{-1} \rightarrow S^{1} \times \mathbb{R}$ by $\psi(x, y, z):=\left(\frac{1}{\sqrt{1+z^{2}}} x, \frac{1}{\sqrt{1+z^{2}}} y, z\right)$. This is again a smooth map and it is inverse to φ.
Next consider $M_{-1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2}=x^{2}+y^{2}+1\right\}=M_{-1}^{+} \amalg M_{-1}^{-}$where $M_{-1}^{ \pm}:=$ $\left\{(x, y, z) \in \mathbb{R}^{3} \mid z= \pm \sqrt{x^{2}+y^{2}+1}\right\}$. Both $M_{-1}^{ \pm}$are the graph of a smooth function on \mathbb{R}^{2}, hence are diffeomorphic to \mathbb{R}^{2}. (The diffeomorphism itself can be taken to be the projection $(x, y, z) \mapsto(x, y)$, with inverse $\left.(x, y) \mapsto\left(x, y, \pm \sqrt{x^{2}+y^{2}+1}\right).\right)$

Exercise 2(20 pt)
a) Let V and W be vector spaces and $L: V \rightarrow W$ a linear map. Recall that the rank of L is the dimension of its image $L(V) \subset W$. Show that the rank of L is the biggest number k for which $\Lambda^{k} L: \Lambda^{k} V \rightarrow \Lambda^{k} W$ is nonzero. (Hint: construct a convenient basis for V.)
Solution: Let v_{1}, \ldots, v_{n} be a basis for V such that $\operatorname{ker}(L)=\left\langle v_{k+1}, \ldots, v_{n}\right\rangle$. The elements $L v_{1}, \ldots, L v_{k}$ then form a basis for $\operatorname{Im}(L)$ and k equals the rank of L. Now a basis for $\Lambda^{l} V$ is given by all the products $v_{i_{1}} \wedge \ldots \wedge v_{i_{l}}$ for which $1 \leq i_{1}<\ldots<i_{l} \leq n$. Then,

$$
\Lambda^{l}(L)\left(v_{i_{1}} \wedge \ldots \wedge v_{i_{l}}\right)=L v_{i_{1}} \wedge \ldots \wedge L v_{i_{l}}
$$

which clearly is zero if $l>k$, for then necessarily $i_{l}>k$. Moreover,

$$
\Lambda^{l}(L)\left(v_{1} \wedge \ldots \wedge v_{k}\right)=L v_{1} \wedge \ldots \wedge L v_{k}
$$

is nonzero because the elements $L v_{1}, \ldots, L v_{k}$ are linearly independent.
b) For a nonzero vector $v \in V$ we consider for each $k \geq 0$ the linear map $v \wedge: \Lambda^{k} V \rightarrow \Lambda^{k+1} V$ given by $\alpha \mapsto v \wedge \alpha$. Show that its kernel is given by the image of $v \wedge: \Lambda^{k-1} V \rightarrow \Lambda^{k} V$. (Hint: construct a convenient basis for V.)
Solution: Since $v \neq 0$ we can complement it to a basis $v_{1}, \ldots, v_{n} \in V$, where $v_{1}=v$. For $k=0$ we know that $v \wedge: \Lambda^{0} V=\mathbb{R} \rightarrow \Lambda^{1} V=V$ is injective, since it maps 1 to $v \neq 0$. For $k>0$, the elements $v_{1} \wedge v_{i_{2}} \wedge \ldots \wedge v_{i_{k}}$ lie in the kernel of $v_{1} \wedge$, while the elements $v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots \wedge v_{i_{k}}$ with $1<i_{1}<\ldots<i_{k} \leq n$ are mapped by $v_{1} \wedge$ to a basis of $\operatorname{Im}\left(v_{1} \wedge\right)$. Indeed, this follows from the fact that the elements $v_{1} \wedge v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots \wedge v_{i_{k}}$ are all linearly independent in $\Lambda^{k+1} V$. So we see that $\operatorname{ker}\left(v_{1} \wedge\right)=\left\langle v_{1} \wedge v_{i_{2}} \wedge \ldots \wedge v_{i_{k}} \mid 1<i_{2}<\ldots<i_{k} \leq n\right\rangle$, which is precisely the image of $v_{1} \wedge: \Lambda^{k-1} V \rightarrow \Lambda^{k} V$.

Exercise 3(30 pt) Consider the two-form $\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$ on \mathbb{R}^{3}.
a) Compute $\int_{S^{2}(r)} \omega$, where $S^{2}(r):=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=r^{2}\right\}$ is the two-sphere of radius $r>0$ in \mathbb{R}^{3}.
Solution: By Stokes we know that $\int_{S^{2}(r)} \omega=\int_{B(r)} d w=3 \int_{B(r)} d x \wedge d y \wedge d z$, where $B(r)=$ $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq r^{2}\right\}$. Using polar coordinates this gives

$$
\int_{S^{2}(r)} \omega=4 \pi r^{3}
$$

b) Let $\alpha:=f \cdot \omega \in \Omega^{2}\left(\mathbb{R}^{3} \backslash 0\right)$ where f is the function given by $f(x, y, z):=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}$. Show that $d \alpha=0$ and use this to conclude that $\int_{S^{2}(r)} \alpha$ is independent of $r \in \mathbb{R}_{>0}$. What is its value?
Solution: We have $d \alpha=d f \wedge \omega+f d \omega$, and

$$
\begin{aligned}
d f \wedge \omega & =-\frac{3}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x d x+2 y d y+2 z d z) \wedge(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y) \\
& =-3 f d x \wedge d y \wedge d z=-f d \omega
\end{aligned}
$$

which shows that $d \alpha=0$. Now consider the manifold $A\left(r_{1}, r_{2}\right):=\left\{(x, y, z) \in \mathbb{R}^{3} \mid r_{1} \leq\right.$ $\left.x^{2}+y^{2}+z^{2} \leq r_{2}\right\}$ for $0<r_{1}<r_{2}$, with boundary given by $S^{2}\left(r_{2}\right) \amalg-S^{2}\left(r_{1}\right)$. Stokes then gives us

$$
0=\int_{A\left(r_{1}, r_{2}\right)} d \alpha=\int_{S^{2}\left(r_{2}\right)} \alpha-\int_{S^{2}\left(r_{1}\right)} \alpha
$$

This shows that the integral is independent of $r \in \mathbb{R}_{>0}$. To see what it is, we take $r=1$. There $f=1$, hence $\alpha=\omega$, and from a) we deduce that $\int_{S^{2}(r)} \alpha=4 \pi$.
c) Let V be the vector field on $\mathbb{R}^{3} \backslash 0$ given by $V_{(x, y, z)}:=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}$. Compute the flow φ_{t}^{V} of V and show that $\left(\varphi_{t}^{V}\right)^{*} \alpha=\alpha$. Use this to give another proof of the fact that $\int_{S^{2}(r)} \alpha$ is independent of r.
Solution: The flow of V is given by $\varphi_{t}^{V}(x, y, z):=e^{t}(x, y, z)$. Indeed, $\varphi_{0}^{V}=\mathrm{Id}$, and

$$
\frac{d}{d t} \varphi_{t}^{V}(x, y, z)=e^{t}(x, y, z)=V_{e^{t}(x, y, z)}=V_{\varphi_{t}^{V}(x, y, z)}
$$

To show that $\left(\varphi_{t}^{V}\right)^{*} \alpha=\alpha$ we can do two things. We can check it directly:

$$
\left(\varphi_{t}^{V}\right)^{*} \alpha=\left(\varphi_{t}^{V}\right)^{*} f \cdot\left(\varphi_{t}^{V}\right)^{*} \omega=e^{-3 t} f \cdot e^{3 t} \omega=f \omega=\alpha
$$

or we can compute the Lie derivative:

$$
\mathcal{L}_{V} \alpha=\iota_{V} d \alpha+d \iota_{V} \alpha=0,
$$

because $d \alpha=0$ and $\iota_{V} \alpha=f \iota_{V} \omega$ and $\iota_{V} \omega=0$ as one readily verifies. Since φ_{t}^{V} gives orientation preserving diffeomorphisms from $S^{2}(r)$ to $S^{2}\left(e^{t} r\right)$, we see that $\int_{S^{2}\left(e^{t} r\right)} \alpha=$ $\int_{S^{2}(r)}\left(\varphi_{t}^{V}\right)^{*} \alpha=\int_{S^{2}(r)} \alpha$. (The fact that φ_{t}^{V} is orientation preserving follows from its explicit formula, but it is true for every flow in general because it can be continuously deformed to the identity map.)

Exercise $4(30 \mathrm{pt})$ For this exercise you may use without proof that $\int_{S^{n}}: H^{n}\left(S^{n}\right) \rightarrow \mathbb{R}$ is an isomorphism. Let $\pi: S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ denote the quotient map and $\iota: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ the antipodal map $x \mapsto-x$.
a) Show that a form $\omega \in \Omega^{k}\left(S^{n}\right)$ is of the form $\omega=\pi^{*} \alpha$ for a unique $\alpha \in \Omega^{k}\left(\mathbb{R} \mathbb{P}^{n}\right)$ if and only if $\iota^{*} \omega=\omega$. Deduce that $\frac{1}{2}\left(\omega+\iota^{*} \omega\right) \in \pi^{*}\left(\Omega^{k}\left(\mathbb{R} \mathbb{P}^{n}\right)\right)$ for every $\omega \in \Omega^{k}\left(S^{n}\right)$.
Solution: Since $\pi \iota=\pi$ it follows that $\iota^{*} \pi^{*}=\pi^{*}$. In particular, $\iota^{*}\left(\pi^{*} \alpha\right)=\pi^{*} \alpha$ for all $\alpha \in \Omega^{k}\left(\mathbb{R}^{n}\right)$. Conversely, suppose that $\iota^{*} \omega=\omega$ for $\omega \in \Omega^{k}\left(S^{n}\right)$. The map $\pi: S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is a local diffeomorphism, and the inverse image of a point $[x] \in \mathbb{R P}^{n}$ consists of two points; $\pm x \in S^{n}$. Hence, there are neighborhoods V of $[x]$ in $\mathbb{R P}^{n}$ and $U_{ \pm}$of $\pm x$ in S^{n} such that $\left.\pi\right|_{U_{ \pm}}: U_{ \pm} \rightarrow V$ is a diffeomorphism. So, there are unique $\alpha_{ \pm} \in \Omega^{k}(V)$ with the property that $\left(\left.\pi\right|_{U_{ \pm}}\right)^{*} \alpha_{ \pm}=\left.\omega\right|_{U_{ \pm}}$. Observe that $\left.\pi\right|_{U_{+}}=\left.\pi\right|_{U_{-}} \circ \iota$, hence $\left(\left.\pi\right|_{U_{+}}\right)^{*} \alpha_{-}=\iota^{*}\left(\left.\pi\right|_{U_{-}}\right)^{*} \alpha_{-}=$ $\left.\iota^{*} \omega\right|_{U_{-}}=\left.\omega\right|_{U_{+}}=\left(\left.\pi\right|_{U_{+}}\right)^{*} \alpha_{+}$. In particular, $\alpha_{+}=\alpha_{-}$. We have now shown that around each point in $\mathbb{R P}^{n}$ there is a unique α with the desired property. By uniqueness all these locally constructed α 's glue together into a globally defined $\alpha \in \Omega^{k}\left(\mathbb{R} \mathbb{P}^{n}\right)$. The last question follows immediately since $\iota^{*}\left(\frac{1}{2}\left(\omega+\iota^{*} \omega\right)\right)=\frac{1}{2}\left(\iota^{*} \omega+\omega\right)$, because $\iota \circ \iota=$ Id.
b) If n is even and $\iota^{*} \omega=\omega$, show that $\int_{S^{n}} \omega=0$.

Solution: Let $D^{+}, D^{-} \subset S^{n}$ be the upper and lower hemisphere. Then ι induces a diffeomorphism $\iota: D^{+} \rightarrow D^{-}$, which for n even is orientation reversing. Indeed, for n even the map $\iota: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ is orientation reversing, and maps an outward normal of S^{n} to another outward normal of S^{n}. Hence the restriction $\iota_{S^{n}}: S^{n} \rightarrow S^{n}$ is orientation reversing. Consequently:

$$
\int_{S^{n}} \omega=\int_{D^{+}} \omega+\int_{D^{-}} \omega-=\int_{D^{+}} \omega+\int_{D^{-}} \iota^{*} \omega=\int_{D^{+}} \omega-\int_{D^{+}} \omega=0
$$

c) Show that $H^{n}\left(\mathbb{R}^{n} \mathbb{P}^{n}\right)=0$ for all even n. Deduce that $\mathbb{R} \mathbb{P}^{n}$ is not orientable for n even.
(Hint: for $\omega \in \Omega^{n}\left(\mathbb{R P}^{n}\right)$ show that $\pi^{*} \omega$ is exact. Then use part a) to write $\pi^{*} \omega=d \alpha$ for some α with $\iota^{*} \alpha=\alpha$.)
Solution: Let $\omega \in \Omega^{n}\left(\mathbb{R P}^{n}\right)$. By a) and b) we know that $\int_{S^{n}} \pi^{*} \omega=0$, so by the given fact about $H^{n}\left(S^{n}\right)$ we know that $\pi^{*} \omega=d \alpha$ for some $\alpha \in \Omega^{n-1}\left(S^{n}\right)$. This α need not satisfy $\iota^{*} \alpha=\alpha$, but we can consider $\widetilde{\alpha}:=\frac{1}{2}\left(\alpha+\iota^{*} \alpha\right)$. We have $\iota^{*} \widetilde{\alpha}=\widetilde{\alpha}$, while $d \widetilde{\alpha}=\frac{1}{2}\left(d \alpha+\iota^{*} d \alpha\right)=$ $\pi^{*} \omega$. By part a) again we can write $\widetilde{\alpha}=\pi^{*} \beta$ for some $\beta \in \Omega^{n-1}\left(\mathbb{R} \mathbb{P}^{n}\right)$, and we have $\pi^{*} \omega=\pi^{*} d \beta$. Using a) once more, this implies $\omega=d \beta$, hence ω is exact. As ω was arbitrary, $H^{n}\left(\mathbb{R P}^{n}\right)=0$.

Exercise $5(20 \mathrm{pt})$ Recall that a vector bundle $\pi: E \rightarrow M$ is called orientable if we can choose an orientation on each fiber, in such a way that around each point in M we can find a positively oriented frame.
a) Show that a line bundle (i.e. a vector bundle of rank 1) is trivial if and only if it is orientable. Solution: Clearly if E is trivial, i.e. isomorphic to $M \times \mathbb{R}$, it is orientable since we can pick a nowhere vanishing section and let that induce an orientation on each fiber. Conversely, suppose that E is orientable. Choose an open cover $\left\{U_{\alpha}\right\}$ of M together with positively oriented sections $s_{\alpha} \in \Gamma\left(\left.E\right|_{U_{\alpha}}\right)$. Let $\left\{\rho_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{U_{\alpha}\right\}$. Then $\rho_{\alpha} s_{\alpha} \in \Gamma(E)$, i.e. is a globally defined section of E. Let $s:=\sum_{\alpha} \rho_{\alpha} s_{\alpha} \in \Gamma(E)$ (this is welldefined since the sum is locally finite). If $x \in M, s(x)=\sum_{\alpha} \rho_{\alpha}(x) s_{\alpha}(x)$, and all the $s_{\alpha}(x)$ are nonnegative in E_{x} with respect to the given orientation. Moreover, whenever $\rho_{\alpha}(x)>0$, $s_{\alpha}(x)>0$, and we know that there is at least one α for which this is true since $\sum_{\alpha} \rho_{\alpha}=1$.
b) Show that for any line bundle E over M the line bundle $E \otimes E$ is trivial. (Hint: use a))

Solution: We will construct an orientation on $E \otimes E$. This is based on the following observation: if $v \in E_{x}$ is nonzero, it defines a nonzero element $v \otimes v \in E_{x} \otimes E_{x}$, hence an orientation on $E_{x} \otimes E_{x}$. Moreover, if $w=\lambda v$ is another nonzero element of E_{x}, then $w \otimes w=\lambda^{2} v \otimes v$. Since $\lambda^{2}>0$ for every $\lambda \neq 0$, we see that this orientation on $E_{x} \otimes E_{x}$ is independent of
the choice of nonzero vector in E_{x}. We endow all the fibers $E_{x} \otimes E_{x}$ of $E \otimes E$ with this orientation. This is an orientation of E, i.e. is continuous, because if e is a local frame for E, then $e \otimes e$ is a frame for $E \otimes E$ which is positive. Hence, $E \otimes E$ is oriented and so trivial by part a).

$$
c>0: M_{c}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid \quad x^{2}+y^{2}=z^{2}+c\right\}
$$

