
Solutions to the final exam

Questions

Exercise 1(20 pt) Consider the map F : R3 → R given by F (x, y, z) := x2 + y2 − z2.

a) For which c ∈ R is Mc := F−1(c) a smooth submanifold of R3? Give a sketch of Mc for all
c ∈ R.

Solution: The derivative of F is given by d(x,y,z)F = (2x, 2y,−2z) : R3 → R and is surjective
for all (x, y, z) 6= 0. So (0, 0, 0) ∈ F−1(0) is the only point where F is not a submersion,
showing that Mc = F−1(c) is a smooth submanifold of R3 for all c 6= 0. (Sketch: see last
page of this file)

M0 is not a smooth submanifold, in fact it is not even a topological manifold! It is given by
a cone, and a neighborhood of the tip of the cone can not be homeomorphic to a disc, for it
becomes disconnected if you remove the tip itself.

b) Show that M1 is diffeomorphic to S1 × R and that M−1 is diffeomorphic to R2
∐

R2.

Solution: M1 = {(x, y, z)|x2 +y2 = 1 + z2}. Since 1 + z2 is always positive, this is a union of
circles as z varies. Explicitly, define ϕ : S1 ×R→M1 by ϕ(a, b, t) := (

√
1 + t2a,

√
1 + t2b, t)

where t ∈ R and (a, b) ∈ S1 ⊂ R2 (seen as the unit circle). This is a smooth map because it
is the restriction of the smooth map from R× R2 to R3 given by the same formula. Define
ψ : M−1 → S1 ×R by ψ(x, y, z) := ( 1√

1+z2
x, 1√

1+z2
y, z). This is again a smooth map and it

is inverse to ϕ.

Next consider M−1 = {(x, y, z) ∈ R3|z2 = x2 + y2 + 1} = M+
−1

∐
M−−1 where M±−1 :=

{(x, y, z) ∈ R3|z = ±
√
x2 + y2 + 1}. Both M±−1 are the graph of a smooth function on R2,

hence are diffeomorphic to R2. (The diffeomorphism itself can be taken to be the projection

(x, y, z) 7→ (x, y), with inverse (x, y) 7→ (x, y,±
√
x2 + y2 + 1).)

Exercise 2(20 pt)

a) Let V and W be vector spaces and L : V → W a linear map. Recall that the rank of L is
the dimension of its image L(V ) ⊂W . Show that the rank of L is the biggest number k for
which ΛkL : ΛkV → ΛkW is nonzero. (Hint: construct a convenient basis for V .)

Solution: Let v1, . . . , vn be a basis for V such that ker(L) = 〈vk+1, . . . , vn〉. The elements
Lv1, . . . , Lvk then form a basis for Im(L) and k equals the rank of L. Now a basis for ΛlV
is given by all the products vi1 ∧ . . . ∧ vil for which 1 ≤ i1 < . . . < il ≤ n. Then,

Λl(L)(vi1 ∧ . . . ∧ vil) = Lvi1 ∧ . . . ∧ Lvil
which clearly is zero if l > k, for then necessarily il > k. Moreover,

Λl(L)(v1 ∧ . . . ∧ vk) = Lv1 ∧ . . . ∧ Lvk

is nonzero because the elements Lv1, . . . , Lvk are linearly independent.

b) For a nonzero vector v ∈ V we consider for each k ≥ 0 the linear map v∧ : ΛkV → Λk+1V
given by α 7→ v ∧ α. Show that its kernel is given by the image of v∧ : Λk−1V → ΛkV .
(Hint: construct a convenient basis for V .)

Solution: Since v 6= 0 we can complement it to a basis v1, . . . , vn ∈ V , where v1 = v. For
k = 0 we know that v∧ : Λ0V = R → Λ1V = V is injective, since it maps 1 to v 6= 0.
For k > 0, the elements v1 ∧ vi2 ∧ . . . ∧ vik lie in the kernel of v1∧, while the elements
vi1 ∧ vi2 ∧ . . . ∧ vik with 1 < i1 < . . . < ik ≤ n are mapped by v1∧ to a basis of Im(v1∧).
Indeed, this follows from the fact that the elements v1 ∧ vi1 ∧ vi2 ∧ . . . ∧ vik are all linearly
independent in Λk+1V . So we see that ker(v1∧) = 〈v1∧vi2 ∧ . . .∧vik |1 < i2 < . . . < ik ≤ n〉,
which is precisely the image of v1∧ : Λk−1V → ΛkV .
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Exercise 3(30 pt) Consider the two-form ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy on R3.

a) Compute
∫
S2(r)

ω, where S2(r) := {(x, y, z) ∈ R3|x2 + y2 + z2 = r2} is the two-sphere of

radius r > 0 in R3.

Solution: By Stokes we know that
∫
S2(r)

ω =
∫
B(r)

dw = 3
∫
B(r)

dx ∧ dy ∧ dz, where B(r) =

{(x, y, z) ∈ R3|x2 + y2 + z2 ≤ r2}. Using polar coordinates this gives∫
S2(r)

ω = 4πr3.

b) Let α := f · ω ∈ Ω2(R3\0) where f is the function given by f(x, y, z) := (x2 + y2 + z2)−
3
2 .

Show that dα = 0 and use this to conclude that
∫
S2(r)

α is independent of r ∈ R>0. What

is its value?

Solution: We have dα = df ∧ ω + fdω, and

df ∧ ω =− 3

2
(x2 + y2 + z2)−5/2(2xdx+ 2ydy + 2zdz) ∧ (xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)

=− 3fdx ∧ dy ∧ dz = −fdω,

which shows that dα = 0. Now consider the manifold A(r1, r2) := {(x, y, z) ∈ R3|r1 ≤
x2 + y2 + z2 ≤ r2} for 0 < r1 < r2, with boundary given by S2(r2)

∐
−S2(r1). Stokes then

gives us

0 =

∫
A(r1,r2)

dα =

∫
S2(r2)

α−
∫
S2(r1)

α.

This shows that the integral is independent of r ∈ R>0. To see what it is, we take r = 1.
There f = 1, hence α = ω, and from a) we deduce that

∫
S2(r)

α = 4π.

c) Let V be the vector field on R3\0 given by V(x,y,z) := x ∂
∂x + y ∂

∂y + z ∂
∂z . Compute the flow

ϕVt of V and show that (ϕVt )∗α = α. Use this to give another proof of the fact that
∫
S2(r)

α

is independent of r.

Solution: The flow of V is given by ϕVt (x, y, z) := et(x, y, z). Indeed, ϕV0 = Id, and

d

dt
ϕVt (x, y, z) = et(x, y, z) = Vet(x,y,z) = VϕVt (x,y,z).

To show that (ϕVt )∗α = α we can do two things. We can check it directly:

(ϕVt )∗α = (ϕVt )∗f · (ϕVt )∗ω = e−3tf · e3tω = fω = α

or we can compute the Lie derivative:

LV α = ιV dα+ dιV α = 0,

because dα = 0 and ιV α = fιV ω and ιV ω = 0 as one readily verifies. Since ϕVt gives
orientation preserving diffeomorphisms from S2(r) to S2(etr), we see that

∫
S2(etr)

α =∫
S2(r)

(ϕVt )∗α =
∫
S2(r)

α. (The fact that ϕVt is orientation preserving follows from its explicit

formula, but it is true for every flow in general because it can be continuously deformed to
the identity map.)

Exercise 4(30 pt) For this exercise you may use without proof that
∫
Sn

: Hn(Sn) → R is
an isomorphism. Let π : Sn → RPn denote the quotient map and ι : Rn+1 → Rn+1 the antipodal
map x 7→ −x.
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a) Show that a form ω ∈ Ωk(Sn) is of the form ω = π∗α for a unique α ∈ Ωk(RPn) if and only
if ι∗ω = ω. Deduce that 1

2 (ω + ι∗ω) ∈ π∗(Ωk(RPn)) for every ω ∈ Ωk(Sn).

Solution: Since πι = π it follows that ι∗π∗ = π∗. In particular, ι∗(π∗α) = π∗α for all
α ∈ Ωk(RPn). Conversely, suppose that ι∗ω = ω for ω ∈ Ωk(Sn). The map π : Sn → RPn
is a local diffeomorphism, and the inverse image of a point [x] ∈ RPn consists of two points;
±x ∈ Sn. Hence, there are neighborhoods V of [x] in RPn and U± of ±x in Sn such that
π|U± : U± → V is a diffeomorphism. So, there are unique α± ∈ Ωk(V ) with the property
that (π|U±)∗α± = ω|U± . Observe that π|U+ = π|U− ◦ ι, hence (π|U+)∗α− = ι∗(π|U−)∗α− =
ι∗ω|U− = ω|U+

= (π|U+
)∗α+. In particular, α+ = α−. We have now shown that around

each point in RPn there is a unique α with the desired property. By uniqueness all these
locally constructed α’s glue together into a globally defined α ∈ Ωk(RPn). The last question
follows immediately since ι∗( 1

2 (ω + ι∗ω)) = 1
2 (ι∗ω + ω), because ι ◦ ι = Id.

b) If n is even and ι∗ω = ω, show that
∫
Sn
ω = 0.

Solution: Let D+, D− ⊂ Sn be the upper and lower hemisphere. Then ι induces a dif-
feomorphism ι : D+ → D−, which for n even is orientation reversing. Indeed, for n even
the map ι : Rn+1 → Rn+1 is orientation reversing, and maps an outward normal of Sn to
another outward normal of Sn. Hence the restriction ιSn : Sn → Sn is orientation reversing.
Consequently:∫

Sn
ω =

∫
D+

ω +

∫
D−

ω− =

∫
D+

ω +

∫
D−

ι∗ω =

∫
D+

ω −
∫
D+

ω = 0.

c) Show that Hn(RPn) = 0 for all even n. Deduce that RPn is not orientable for n even.
(Hint: for ω ∈ Ωn(RPn) show that π∗ω is exact. Then use part a) to write π∗ω = dα for
some α with ι∗α = α.)

Solution: Let ω ∈ Ωn(RPn). By a) and b) we know that
∫
Sn
π∗ω = 0, so by the given fact

about Hn(Sn) we know that π∗ω = dα for some α ∈ Ωn−1(Sn). This α need not satisfy
ι∗α = α, but we can consider α̃ := 1

2 (α+ ι∗α). We have ι∗α̃ = α̃, while dα̃ = 1
2 (dα+ ι∗dα) =

π∗ω. By part a) again we can write α̃ = π∗β for some β ∈ Ωn−1(RPn), and we have
π∗ω = π∗dβ. Using a) once more, this implies ω = dβ, hence ω is exact. As ω was arbitrary,
Hn(RPn) = 0.

Exercise 5(20 pt) Recall that a vector bundle π : E → M is called orientable if we can choose
an orientation on each fiber, in such a way that around each point in M we can find a positively
oriented frame.

a) Show that a line bundle (i.e. a vector bundle of rank 1) is trivial if and only if it is orientable.

Solution: Clearly if E is trivial, i.e. isomorphic to M × R, it is orientable since we can pick
a nowhere vanishing section and let that induce an orientation on each fiber. Conversely,
suppose that E is orientable. Choose an open cover {Uα} of M together with positively
oriented sections sα ∈ Γ(E|Uα). Let {ρα} be a partition of unity subordinate to {Uα}. Then
ραsα ∈ Γ(E), i.e. is a globally defined section of E. Let s :=

∑
α ραsα ∈ Γ(E) (this is well-

defined since the sum is locally finite). If x ∈ M , s(x) =
∑
α ρα(x)sα(x), and all the sα(x)

are nonnegative in Ex with respect to the given orientation. Moreover, whenever ρα(x) > 0,
sα(x) > 0, and we know that there is at least one α for which this is true since

∑
α ρα = 1.

b) Show that for any line bundle E over M the line bundle E ⊗ E is trivial. (Hint: use a))

Solution: We will construct an orientation on E⊗E. This is based on the following observa-
tion: if v ∈ Ex is nonzero, it defines a nonzero element v⊗v ∈ Ex⊗Ex, hence an orientation
on Ex ⊗ Ex. Moreover, if w = λv is another nonzero element of Ex, then w ⊗ w = λ2v ⊗ v.
Since λ2 > 0 for every λ 6= 0, we see that this orientation on Ex ⊗ Ex is independent of
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the choice of nonzero vector in Ex. We endow all the fibers Ex ⊗ Ex of E ⊗ E with this
orientation. This is an orientation of E, i.e. is continuous, because if e is a local frame for
E, then e⊗ e is a frame for E ⊗E which is positive. Hence, E ⊗E is oriented and so trivial
by part a).
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