Differentieerbare Variëteiten (WISB342) 9 november 2005

Question 1

Consider the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $F(x, y, z)=x^{2}+y^{2}-z^{2}$.
a) For which values r is $M_{r}=F^{-1}(r)$ a manifold? Why? What is its dimension? How many connected components does M_{r} have, depending on r ? Sketch a picture of M_{r} for several typical values of r.
b) Find an atlas for M_{1} consisting of two charts and compute the transition map between them (Hint: use cylindrical coordinates).
c) Show that M_{1} is diffeomorphic to the cylinder $S^{1} \times \mathbb{R}$.

Question 2

Consider the following vector fields on \mathbb{R}^{3} :

$$
V_{1}=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y} ; \quad V_{2}=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z} ; \quad V_{3}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}
$$

a) Show that all the V_{i} 's are tangent to the unit sphere S^{2}, and that their values span $T_{p} S^{2}$ at every $p \in S^{2}$.
b) Show that, nevertheless, no two of the three V_{i} 's suffice to give a basis for $T_{p} S^{2}$ at every p.
c) Find smooth functions c^{1}, c^{2} and c^{3} on \mathbb{R}^{3} such that $c^{i} V_{i}=0$ identically on \mathbb{R}^{3}.

Question 3

Let M be a manifold, V and W vector fields on M. Consider the operator $[V, W]: C^{\infty}(M) \rightarrow C^{\infty}(M)$ defined by $[V, W](h)=V(W(h))-W(V(h))$.
a) Show that for $f, g \in C^{\infty}(M)$,

$$
[f V, g W]=f g[V, W]+f V(g) W-g W(f) V
$$

b) Show that $[V, W]$ is in fact a derivation, hence a vector field whose value at $p \in M$ is given by $[V, W]_{p}(h)=V_{p}(W(h))-W_{p}(V(h))$.
c) If $V=v^{i} \frac{\partial}{\partial x^{i}}, W=w^{j} \frac{\partial}{\partial x^{j}}$ in some coordinate chart (x, U), with $v^{i}, w^{j} \in C^{\infty}(U)$, it follows that $[V, W]=c^{k} \frac{\partial}{\partial x^{k}}$ for some $c^{k} \in C^{\infty}(U)$.
Express the c^{k} 's in terms of the v^{i} 's and w^{j} 's. In particular, what is $\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]$?

Question 4

Let M be a manifold, $h \in C^{\infty}(M)$.
a) Show that $p \in M$ is a critical point of h if and only if $v(h)=0$ for all $v \in T_{p} M$.
b) For a critical point p of h and $v, w \in T_{p} M$, define $H_{h, p}(v, w)=v(\tilde{w}(h))$, where \tilde{w} is a vector field defined in some neighborhood of p whose value at p is w. Show that $v(\tilde{w}(h))=w(\tilde{v}(h))$ (where \tilde{v} is, likewise, an extension of v to a vector field near p), and deduce from this that the definition of $H_{h, p}$ only depends on v and w rather than their extensions. Thus, $H_{h, p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is a well-defined symmetric bilinear form, known as the Hessian of h at p. A critical point is called nondegenerate if the matrix $H_{i j}=H_{h, p}\left(e_{i}, e_{j}\right)$ of the Hessian with respect to some (hence any) basis $\left\{e_{i}\right\}$ is nonsingular. The index of a nondegenerate critical point is, by definition, the number of negative eigenvalues of the Hessian at that point.
c) Consider the torus T^{2} embedded in \mathbb{R}^{3} as follows:

$$
x=\left(2+\cos \theta^{1}\right) \cos \theta^{2} ; \quad y=\sin \theta^{1} ; \quad z=\left(2+\cos \theta^{1}\right) \sin \theta^{2}
$$

for $\theta^{1} \in[-\pi / 2,3 \pi / 2), \theta^{2} \in[-\pi, \pi]$. Let $h \in C^{\infty}\left(T^{2}\right)$ be the "height function" given by $h(x, y, z)=z$ (restricted to the torus). Find the critical points of h, show that they are all nondegenerate and compute their indices. Sketch a picture of the torus, indicating the critical points. (Hint: the formulas describing the torus, when restricted to $\theta^{1} \in(-\pi / 2,3 \pi / 2)$, $\theta^{2} \in(-\pi, \pi)$, can be viewed as x^{-1} for a coordinate system (x, U) on T^{2}. All critical points on h lie in U. Use the basis $\left\{\frac{\partial}{\partial \theta^{1}}, \frac{\partial}{\partial \theta^{2}}\right\}$ to compute the Hessian matrix at each critical point: it is nothing but the matrix of second partial derivatives!)

