EXAM DIFFERENTIAL MANIFOLDS, MARCH 19 2007, 9:00-12:00

READ THIS FIRST

- Put your name and student number on every sheet you hand in.
- You may do this exam either in English or in Dutch. Your grade will not only depend on the correctness of your answers, but also on your presentation; for this reason you are strongly advised to do the exam in your mother tongue if that possibility is open to you.
- Be clear and concise (and so avoid irrelevant discussions).
- Do not forget to turn this page: there are also problems on the other side.
- I will soon post a set of worked solutions on http://www.math.uu.nl/people/looijeng/smoothman06.html
- (1) Let $\lambda \in \mathbb{C}$ have positive real part. Prove that the map $f : \mathbb{R} \to \mathbb{C}$ defined by $f(t) = e^{\lambda t}$ is an injective immersion whose image is not closed in \mathbb{C} . Is f an embedding?
- (2) Show that real projective *n*-space P^n is orientable for *n* odd. Explain why P^n cannot be oriented when *n* is even.
- (3) Let M be a manifold, f : M → R² a C[∞]-map and put N := f⁻¹(0,0). Let V and W be vector fields on M that lift ∂/∂_x resp. ∂/∂_y (so D_pf(V_p) = ∂/∂_x and D_pf(W_p) = ∂/∂_y for every p ∈ M).
 (a) Prove that N is a submanifold of M and that [V, W] is tangent
 - (a) Prove that N is a submanifold of M and that [V, W] is tangent to it (i.e., restricts to a vector field on N).
 - (b) Suppose that V and W generate flows on M (that we shall denote by H resp. I). Prove that the map $\mathbb{R}^2 \times N \to M$, $(a, b, p) \mapsto I_b H_a(p)$ is a diffeomorphism. (Hint: find a formula for its inverse.)
 - (c) Prove that if V and W generate flows on M, then the inclusion $i: N \subset M$ induces an isomorphism on De Rham cohomology: $H^k(i): H^k_{DR}(M) \to H^k_{DR}(N)$ is an isomorphism for all k.

(4) Let M be a compact manifold and denote by $\pi : S^1 \times M \to M$ the projection. A k-form α on $S^1 \times M$ can always be written

$$\alpha(\theta, p) = \alpha'(\theta, p) + d\theta \wedge \alpha''(\theta, p),$$

where α' and α'' are forms (of degree k resp. k - 1) on M that depend on $\theta \in S^1$ and θ is the angular coordinate on S^1 . Let $I(\alpha)$ be the (k - 1)-form on M defined by $I(\alpha)(p) := \int_0^{2\pi} \alpha''(\theta, p) d\theta$. (a) Prove that I commutes with the exterior derivative: dI = Id.

- (b) Prove that *I* induces a linear map

$$I: H^k_{DR}(S^1 \times M) \to H^{k-1}_{DR}(M)$$

- and show that this map is surjective. (c) Prove that $H^k(\pi) : H^k_{DR}(M) \to H^k_{DR}(S^1 \times M)$ is injective and that its composition with I is zero.
- (d) Prove that the image of $H^k(\pi)$ is the kernel of *I*. Conclude that $H^k_{DR}(S^1 \times M) \cong H^k_{DR}(M) \oplus H^{k-1}_{DR}(M)$.