Worked exam Differentiable manifolds, March 16 2009, 9:00-12:00

Maps and manifolds are assumed to be of class C^{∞} unless stated otherwise.

1. Give an example of an injective immersion of between manifolds which fails to be an embedding. Here are two examples: $f: t \in(-1, \infty) \mapsto\left(t^{2}-1, t^{3}-t\right)$ and $g: t \in \mathbb{R} \mapsto\left(e^{2 \pi \sqrt{-1} t}, e^{a 2 \pi \sqrt{-1} t}\right) \in \mathbb{C}^{2}$ with $a \in \mathbb{R}-\mathbb{Q}$. In either case we have an injective immersion, but the map is not a homeomorphism onto its image, because the preimage of any neighborhood of $f(1)$ resp. $g(0)$ is never connected.
2. Explain why any 2-form on a Möbius band must have a zero. If a m-manifold M admits a nowhere vanishing m-form ω, then the charts (U, κ) for which $\omega \mid U$ has the form $\kappa^{*}\left(f d x^{1} \wedge \cdots \wedge d x^{m}\right)$ with f a positive function on all of $\kappa(U)$, define an orientation for M. In particular, M is orientable. But we know that the Möbius band is not orientable.

Let M be a compact nonempty m-manifold and let ω be a nowhere zero m-form on M. Show that M admits an orientation such that the integral of ω relative to this orientation is positive. The above reasoning produces an orientation of M. We show this orientation is as desired. Since M is compact, we can cover M by a finite number of charts $\left(U_{i}, \kappa_{i}\right)_{i=1}^{N}$ such that $\omega \mid U_{i}=\kappa_{i}^{*}\left(f_{i} d x^{1} \wedge \cdots \wedge d x^{m}\right)$, with f_{i} a positive on all of $\kappa_{i}\left(U_{i}\right)$. Choose a partition of unity $\left(\phi_{i}: M \rightarrow[0,1]\right)_{i=1}^{N}$ subordinate to the covering $\left(U_{i}\right)_{i}$. We put $\psi_{i}:=\phi_{i} \kappa_{i}^{-1}: \kappa_{i}\left(U_{i}\right) \rightarrow[0,1]$. Then ψ_{i} has compact support so that $\int_{\kappa_{i}\left(U_{i}\right)} \psi_{i} f_{i} d x^{1} d x^{2} \ldots d x^{m}$ is a definite integral whose value is ≥ 0 (it is even >0 unless the integrand is identically zero). This integral is by definition equal to $\int_{M} \phi_{i} \omega$; it is apparently >0 unless $\phi_{i} \omega$ is identically zero. We see that $\int_{M} \omega=\sum_{i} \int_{M} \phi_{i} \omega$ is ≥ 0. If it were zero, then $\phi_{i} \omega=0$ for all i and hence $\omega=0$, which contradicts our assumption.
3. Let M be an m-manifold, $p \in M$ and V a vector field on M with $V_{p} \neq 0$. Let $H:(\varepsilon, \varepsilon) \times U \rightarrow M$ be a local flow of V, where $\varepsilon>0$ and U is a neighborhood of p. Let $N \subset U$ be a submanifold of M of dimension $m-1$ with $p \in N$ and $V_{p} \notin T_{p} N$.
(a) Prove that the restriction of $D_{p} H$ to $\mathbb{R} \times T_{p} N$ (and going to $T_{p} M$) is an isomorphism of vector spaces. Since $H(0, q)=q$ for all $q \in N$, the restriction of $D_{p} H$ to $\{0\} \times T_{p} N \cong$ $T_{p} N$ is simply the inclusion $T_{p} N \subset T_{p} M$. On the other hand, $t \mapsto H(t, p)$ has derivative in $t=0$ equal to V_{p}, in other words, $D_{p} H(1,0)=V_{p}$. Since $V_{p} \notin T_{p} N$, it follows that the restriction of $D_{p} H$ to $\mathbb{R} \times T_{p} N \rightarrow T_{p} M$ is injective. Since domain and range have the same dimension it must be an isomorphism of vector spaces.
(b) Prove that H maps a neighborhood of $(0, p)$ in $(\varepsilon, \varepsilon) \times N$ diffeomorphically onto a neighborhood of p in M. This follows from (a) and the inverse function theorem.
(c) We use (b) to find a product neighborhood $\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right) \times N^{\prime}$ of $(0, p)$ in $(\varepsilon, \varepsilon) \times N$ that is mapped by H diffeomorphically onto a neighborhood U^{\prime} of p in M and denote by $G: U^{\prime} \rightarrow\left(\varepsilon^{\prime}, \varepsilon^{\prime}\right) \times N^{\prime}$ the inverse of this map. Prove that G takes $V \mid U^{\prime}$ to the vector field $\left(\frac{\partial}{\partial t}, 0\right)$. It is enough to show that the diffeomorphism $\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right) \times N^{\prime} \rightarrow U^{\prime}$ (a restriction of H) takes the the vector field $\left(\frac{\partial}{\partial t}, 0\right)$ to $V \mid U^{\prime}$. But this is true by the very definition of a local flow.
(d) Conclude that we can find a chart $\left(U^{\prime \prime} ; \kappa^{1}, \ldots, \kappa^{m}\right)$ of M at p on which V takes the form $\frac{\partial}{\partial \kappa^{1}}$ and $N \cap U^{\prime \prime}$ is given by $\kappa^{1}=0$. Choose N^{\prime} in (c) so small that it is the domain of a chart $\left(\lambda^{1}, \ldots, \lambda^{n-1}\right): N^{\prime} \rightarrow \mathbb{R}^{m-1}$. Write $G=\left(G^{1}, G^{\prime}\right)$. Then $U^{\prime \prime}:=U^{\prime}$ and $\left(\kappa^{1}, \cdots, \kappa^{m}\right)=\left(G^{1}, \lambda^{1} G^{\prime}, \ldots, \lambda^{m-1} G^{\prime}\right)$ is as desired.
4. Prove that any 1-form on the circle is uniquely written as the sum of an exact form and a constant multiple of $d \theta$, where θ is the angular coordinate (which, we recall, is only defined up to an integral multiple of 2π). Any 1-form ω on S^{1} is written $f(\theta) d \theta$ with $f: \mathbb{R} \rightarrow \mathbb{R}$ periodic modulo 2π. Put $c:=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t$. Then the integral of $f-c$ over $[0,2 \pi]$ is zero. This means that $t \in \mathbb{R} \mapsto \int_{0}^{t}(f(\tau)-c) d \tau$ is periodic modulo 2π and hence defines a function $\phi: S^{1} \rightarrow \mathbb{R}$. It is clear that $d \phi=\omega-c d \theta$. So $\omega=d \phi+c d \theta$ is written as an exact form plus a constant multiple of $d \theta$. To see that this way of writing is unique: if $\omega=d \phi^{\prime}+c^{\prime} d \theta$, then integration over the oriented circle yields

$$
\int_{S^{1}} \omega=\int_{S^{1}} d \phi^{\prime}+c^{\prime} \int_{S^{1}} d \theta=0+2 \pi c^{\prime}
$$

from which it follows that $c^{\prime}=c$.

