Solutions of the mid-term exam problems November 11, 2004

- (a) \$\begin{pmatrix} X_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} X_1 \\ Y_1 \end{pmatrix}\$ so that \$\begin{pmatrix} X_1 \\ Z_1 \end{pmatrix}\$ > N\$ \$\begin{pmatrix} 1 & 2 \\ 5 \end{pmatrix}\$, \$\begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}\$ \end{pmatrix}\$ and \$Cov(X_1, Z_1) = 2\$ which implies that \$X_1, Z_1\$ are not independent. In the same way: \$\begin{pmatrix} Y_1 \\ Z_1 \end{pmatrix}\$ > N\$ \$\begin{pmatrix} 1 & 2 \\ Z_1 \end{pmatrix}\$ > N\$ \$\bed{pmatr
 - b) From (a), we know that $Z_1 \sim N(5,6)$, $V_1 \sim N(-4,43)$. Therefore, by the theorem of Fisher (recall also that if $Y \sim \chi_k^2$, then EY = k and Var(Y) = 2k), it is easy to compute $\frac{1}{5}E\bar{Z}_7 = 1, \frac{7}{3}Var(\bar{Z}_7) = 2, \frac{1}{2}ES_z^2 = 3, Var(\frac{S_z^2}{\sqrt{3}}) = 4, \frac{5}{43}ES_v^2 = 5, Var(\frac{\sqrt{18}}{43}S_v^2) = 6.$
 - (c) Recall $X_1 \sim N(1,1), Y_1 \sim N(2,3)$. Calculate further $\frac{21}{101} \operatorname{Var}(7\bar{Z}_7 3\bar{X}_9) = \frac{21}{101} \left(\frac{49\operatorname{Var}(Z_1)}{7} + \frac{9\operatorname{Var}(X_1)}{9} \frac{21 \cdot 2 \cdot 7\operatorname{Cov}(Z_1, X_1)}{7 \cdot 9}\right) = 7, 1 + \frac{1}{3}\operatorname{Var}(2S_y^2 S_z^2) = 1 + \frac{1}{3}\left(4\operatorname{Var}(S_y^2) + \operatorname{Var}(S_z^2)\right) = 8$ because Y_1, Z_1 are independent, $1.8\operatorname{Cov}(X_1, V_1) = \frac{9}{5}\left(2\operatorname{Var}(X_1) 3\operatorname{Cov}(X_1, Y_1)\right) = 9, 10 + \operatorname{Cov}(X_1, V_5) = 10$ because X_1, V_5 are independent and $55P(\bar{Z}_7 > S_z \frac{0.906}{\sqrt{7}} + 5) = 55P\left(\frac{\sqrt{7}(\bar{Z}_7 5)}{S_z} > 0.906\right) = 55P(T > 0.906) = 55(1 0.8) = 11.$
- 2. (a) $ET_1 = \frac{nE\bar{X}_n + mE\bar{Y}_m}{n+m} = \mu$ en $ET_2 = \frac{\alpha nE\bar{X}_n + mE\bar{Y}}{m+\alpha n} = \mu$. Both T_1 and T_2 are unbiased. Therefore, $MSE(T_1) = Var(T_1) = \frac{n^2 Var(\bar{X}) + m^2 Var(\bar{Y})}{(n+m)^2} = \frac{(n+\alpha m)\sigma^2}{(n+m)^2}$, $MSE(T_2) = Var(T_2) = \frac{\alpha^2 n^2 Var(\bar{X}_n) + m^2 Var(\bar{Y}_m)}{(m+\alpha n)^2} = \frac{\alpha \sigma^2}{m+\alpha n}$. Comparing $MSE(T_1)$ with $MSE(T_2)$ boils down to comparing $(n + \alpha m)(m + \alpha n)$ with $\alpha(n + m)^2$ or $1 + \alpha^2$ with 2α . But $1 + \alpha^2 \ge 2\alpha$ (since $(1 - \alpha)^2 \ge 0$), thus $MSE(T_1) \ge MSE(T_2)$, which means that T_2 is more preferable.
 - (b) By the CLT $Z_n = \sqrt{n}(\bar{X}_n \mu) \stackrel{d}{\to} Z \sim N(0, \sigma^2)$ as $n \to \infty$ and $V_n = \sqrt{m}(\bar{Y}_m \mu) \stackrel{d}{\to} V \sim N(0, \alpha\sigma^2)$ as $m \to \infty$. Since Z_n, V_n are independent, $(Z_n, V_n)^T \stackrel{d}{\to} (Z, V)^T$ as $n \to \infty$, where Z, V are independent and have the above marginal normal distributions (this follows immediately from the definition of the weak convergence). Now, apply the continuous mapping theorem to conclude that $\sqrt{n}(T_1 \mu) = \frac{\sqrt{n}(\bar{X}_n \mu)}{1 + m_n/n} + \frac{\sqrt{m_n}(\bar{Y}_m \mu)\sqrt{n/m_n}}{1 + n/m_n} = \frac{Z_n}{1 + m_n/n} + \frac{V_m\sqrt{n/m_n}}{1 + n/m_n} \stackrel{d}{\to} \frac{1}{3}Z + \frac{\sqrt{2}}{3}V \sim N(0, \frac{(1+2\alpha)\sigma^2}{9})$ and similarly $\sqrt{n}(T_2 \mu) = \frac{Z_n\alpha}{\alpha + m_n/n} + \frac{V_m\sqrt{n/m_n}}{1 + \alpha m_n} \stackrel{d}{\to} \frac{\alpha}{\alpha + 2}Z + \frac{\sqrt{2}}{\alpha + 2}V = W \sim N(0, \frac{\alpha\sigma^2}{\alpha + 2})$ as $n \to \infty$. Notice in passing that $\frac{\alpha\sigma^2}{\alpha + 2} \leq \frac{(1+2\alpha)\sigma^2}{9}$ for all $\alpha \in \mathbb{R}$. Apply the delta-method: $\sqrt{n}(\sin(T_2) \sin(\mu)) \stackrel{d}{\to} \cos(\mu)W \sim N(0, \frac{\alpha\sigma^2(\cos(\mu))^2}{\alpha + 2})$ as $n \to \infty$.
 - (c) Denote $\theta = (\mu, \sigma^2)$. The loglikelihood function is $l_{\mu,\sigma^2}(X, Y) = l_{\theta}(X, Y) = \log p_{\theta}(X, Y) = -\frac{(n+m)\log(2\pi)+m\log\alpha}{2} \frac{(n+m)\log\sigma^2}{2} \sum_{i=1}^n \frac{(X_i-\mu)^2}{2\sigma^2} \sum_{j=1}^m \frac{(Y_j-\mu)^2}{2\alpha\sigma^2}$. Solve the likelihood equations $\frac{\partial l_{\theta}(X,Y)}{\partial \theta} = 0$ and derive the MLE $\hat{\mu} = T_2$ and $\hat{\sigma^2} = \frac{\alpha \sum_{i=1}^n (X_i T_2)^2 + \sum_{j=1}^m (Y_j T_2)^2}{\alpha(n+m)}$. The maximum of $l_{\theta}(X,Y)$ is achieved in this point: for any fixed σ^2 the maximum over μ

is in $\hat{\mu}$ and the maximum of $l_{\hat{\mu},\sigma^2}(X,Y)$ is in σ^2 .

If σ^2 is known, the Fisher information about μ is $I_{\mu} = -E_{\theta} \left(\frac{\partial^2 l_{\mu,\sigma^2}(X,Y)}{\partial \mu^2} \right) = \frac{\alpha n+m}{\alpha \sigma^2}$. The MLE T_2 is unbiased and $\operatorname{Var}(T_2) = \frac{\alpha \sigma^2}{m+\alpha n} = \frac{1}{I_{\mu}}$, that is, the Cramér-Rao bound is sharp. If μ is known, the Fisher information about σ^2 is $I_{\sigma^2} = -E_{\theta} \left(\frac{\partial^2 l_{\mu,\sigma^2}(X,Y)}{\partial (\sigma^2)^2} \right) = \frac{n+m}{2\sigma^4}$. The MLE of σ^2 is $\tilde{\sigma^2} = \frac{\alpha \sum_{i=1}^n (X_i - \mu)^2 + \sum_{j=1}^m (Y_j - \mu)^2}{\alpha (n+m)}$ which is unbiased $E\tilde{\sigma^2} = \sigma^2$ and $\operatorname{Var}(\tilde{\sigma^2}) = \frac{\alpha^2 \sum_{i=1}^n \operatorname{Var}(X_i - \mu)^2 + \sum_{j=1}^m \operatorname{Var}(Y_j - \mu)^2}{\alpha^2 (n+m)^2} = \frac{2\sigma^4}{n+m} = \frac{1}{I_{\sigma^2}}$, that is, the Cramér-Rao bound is sharp.

- (d) Let $T_3 = a\bar{X} + b\bar{Y}$ be an unbiased estimator of μ . We must have $ET_3 = \mu$ or $a\mu + b\mu = \mu$, or a + b = 1. Thus a = 1 - b and $MSE(T_3) = Var(T_3) = (a^2 + \alpha b^2)\sigma^2/n$. We have to show that $MSE(T_2) \leq MSE(T_3)$ or $\frac{\alpha}{1+\alpha} \leq (1-b)^2 + \alpha b^2 = 1 - 2b + (1+\alpha)b^2$, or equivalently $0 \leq 1 - 2b(1+\alpha) + (1+\alpha)^2b^2 = (1 - (1+\alpha)b)^2$, which is always true. The proof is completed.
- 3. (a) The moment estimator is a solution of the equations $\bar{X}_n = EX_1 = E(Y + \theta_2) = \theta_1 + \theta_2$, $\frac{1}{n} \sum_{i=1}^n X_i^2 = \overline{X^2}_n = EX_1^2 = E(Y + \theta_2)^2 = (\theta_1 + \theta_2)^2 + \theta_1^2$. This yields $\tilde{\theta}_1 = \sqrt{\overline{X^2}_n - \overline{X}_n^2}$ and $\tilde{\theta}_2 = \bar{X}_n - \sqrt{\overline{X^2}_n - \overline{X}_n^2}$. Notice that $\tilde{\theta}_1 + \tilde{\theta}_2 = \bar{X}_n$ and $\operatorname{Var}(X_1) = \operatorname{Var}(Y) = \theta_1^2$. So, by the CLT, $\sqrt{n} (\tilde{\theta}_1 + \tilde{\theta}_2 - (\theta_1 + \theta_2)) = \sqrt{n} (\bar{X}_n - EX_1) = Y_n \xrightarrow{d} Y \sim N(0, \theta_1^2)$ as $n \to \infty$. By the delta-method, with $\phi(x) = x^{-1}$, $\sqrt{n} ((\tilde{\theta}_1 + \tilde{\theta}_2)^{-1} - (\theta_1 + \theta_2)^{-1}) = \sqrt{n} (\phi(\bar{X}_n) - \phi((\theta_1 + \theta_2)) \xrightarrow{d} \phi'(\theta_1 + \theta_2)Y \sim N(0, \frac{\theta_1^2}{(\theta_1 + \theta_2)^4})$ as $n \to \infty$.
 - (b) Let $X_{(1)} = \min(X_1, \ldots, X_n)$, $\theta = (\theta_1, \theta_2)$. Write down the likelihood function $p_{\theta}(X) = \theta_1^{-1} \exp\left\{\frac{n\theta_2 \sum_{i=1}^n X_i}{\theta_1}\right\} I\{\theta_2 \leq X_{(1)}\}$. For any fixed $\theta_1 > 0$, it is maximized at $\hat{\theta}_2 = X_{(1)}$. Therefore $\max_{\theta_2 \in \mathbb{R}, \theta_1 > 0} p_{\theta}(X) = \max_{\theta_1 > 0} p_{\hat{\theta}_2, \theta_1}(X)$. The maximum of $p_{\hat{\theta}_2, \theta_1}(X)$ is attained at a solution of the equation $\frac{\partial \log p_{\hat{\theta}_2, \theta_1}(X)}{\partial \theta_1} = 0$ or $-\frac{n}{\theta_1} \frac{n\hat{\theta}_2 \sum_{i=1}^n X_i}{\theta_1^2} = 0$, which is $\hat{\theta}_1 = \bar{X}_n X_{(1)}$ (this gives the unique maximum). Thus, the MLE is $(\hat{\theta}_1, \hat{\theta}_2)$. The MLE is biased: $E\hat{\theta}_2 = EX_{(1)} = \theta_2 + \frac{EZ_n}{n} = \theta_2 + \frac{\theta_1}{n} \neq \theta_2$ since $Z_n \sim \exp(1/\theta_1)$ by (c). The MLE is asymptotically unbiased: $E\hat{\theta}_2 = \theta_2 + \frac{\theta_1}{n} \to \theta_2$ and $E\hat{\theta}_1 = E\bar{X}_n EX_{(1)} = \theta_1 + \theta_2 (\theta_2 + \frac{\theta_1}{n}) \to \theta_1$ as $n \to \infty$.
 - (c) Compute $F_{X_1}(x) = \int_{\theta_2}^x f_{\theta_1,\theta_2}(u) du = 1 e^{-\frac{x-\theta_2}{\theta_1}}$ for $x \ge \theta_2$ and $F_{X_1}(x) = 0$ for $x < \theta_2$. Denote $Z_n = n(\hat{\theta}_2 - \theta_2)$, then for $x \ge 0$ $F_{Z_n}(x) = P(n(\hat{\theta}_2 - \theta_2) \le x) = P((X_{(1)} \le \theta_2 + \frac{x}{n}) = 1 - (1 - F_{X_1}(\theta_2 + \frac{x}{n}))^n = 1 - e^{-\frac{x}{\theta_1}}$ and $F_{Z_n}(x) = 0$ for x < 0, i.e. $Z_n \sim \text{Exp}(1/\theta_1)$ for all $n \in \mathbb{N}$. Thus $n(\hat{\theta}_2 - \theta_2) = Z_n \stackrel{d}{\to} Z \sim \text{Exp}(1/\theta_1)$ as $n \to \infty$. Using this, (a) and Slutski's theorem, we obtain that $V_n = \sqrt{n}(\hat{\theta}_1 - \theta_1) = \sqrt{n}(\bar{X}_n - (\theta_1 + \theta_2) - (X_{(1)} - \theta_2)) = \sqrt{n}(\bar{X}_n - (\theta_1 + \theta_2)) + \frac{1}{\sqrt{n}}n(X_{(1)} - \theta_2) = Y_n + o_p(1)Z_n \stackrel{d}{\to} Y \sim N(0, \theta_1^2)$ as $n \to \infty$. By the continuous mapping theorem, $\sin(n(\hat{\theta}_2 - \theta_2)) = \sin(Z_n) \stackrel{d}{\to} \sin(Z)$, with $Z \sim \text{Exp}(1/\theta_1)$, and $\cos(n^{1/3}(\hat{\theta}_1 - \theta_1)) = \cos(n^{-1/6}\sqrt{n}(\hat{\theta}_1 - \theta_1)) = \cos(n^{-1/6}V_n) \stackrel{d}{\to} \cos(0) = 1$ as $n \to \infty$. Therefore, by Slutski's theorem $\frac{\sin(n(\hat{\theta}_2 - \theta_2))}{\cos(n^{1/3}(\hat{\theta}_1 - \theta_1))} \stackrel{d}{\to} \sin(Z)$ as $n \to \infty$, where $Z \sim \text{Exp}(1/\theta_1)$.
 - (d) If θ_2 is known, the Fisher information about θ_1 is $I_{\theta_1} = \operatorname{Var}\left(\frac{\partial \log p_{\theta_2,\theta_1}(X)}{\partial \theta_1}\right) = \operatorname{Var}\left(\frac{\sum_{i=1}^n X_i}{\theta_1^2}\right) = \frac{n}{\theta_1^2}$. The MLE for θ_1 is then $\check{\theta}_1 = \bar{X}_n \theta_2$ (this follows from (b)) which is unbiased for θ_1 and $\operatorname{Var}(\check{\theta}_1) = \frac{\operatorname{Var}(X_1)}{n} = \frac{\theta_1^2}{n} = \frac{1}{I_{\theta_1}}$, i.e. the Cramér-Rao bound is sharp.