JUSTIFY YOUR ANSWERS

Allowed: calculator, material handed out in class and handwritten notes (your handwriting). NO BOOK IS ALLOWED

NOTE:

- The test consists of six exercises for a total of 12 credits.
- The score is computed by adding all the valid credits up to a maximum of 10 .

Exercise 1. Prove the following:
(a) (0.5 pts.) If X has an exponential distribution with rate λ and $a>0$, then $Y=a X$ has an exponential distribution of rate λ / a.
(b) (0.5 pts .) If $X_{1}, X_{2}, \ldots, X_{k}$ are independent random variables with Gamma distributions with parameters $\left(n_{1}, \lambda\right),\left(n_{2}, \lambda\right), \ldots,\left(n_{k}, \lambda\right)$, then their sum $Y=X_{1}+X_{2}+\cdots+X_{k}$ has a Gamma law with parameters $\left(n_{1}+n_{2}+\cdots+n_{k}, \lambda\right)$.

Exercise 2. Consider a branching process with offspring number with mean μ and variance σ^{2}. That means, a sequence of random variables $\left(X_{n}\right)_{n \geq 0}$ with $X_{0}=1$ and

$$
X_{n}=\sum_{i=1}^{X_{n-1}} Z_{i} \quad n \geq 1
$$

where Z_{n} are iid random variables (offspring distribution) independent of the (X_{n}) with mean μ and variance σ^{2}.
(a) (1 pt.) Show that $E\left(X_{n}\right)=\mu^{n}$. [Hint: Start by showing that $E\left(X_{n}\right)=\mu E\left(X_{n-1}\right)$.]
(b) (1 pt.) Show that the variances of the process satisfy the recursive equation

$$
\operatorname{Var}\left(X_{n}\right)=\mu^{n-1} \sigma^{2}+\mu^{2} \operatorname{Var}\left(X_{n-1}\right) .
$$

Exercise 3. (1pt.) Consider a Markov processes started in the invariant (or stationary) measure. If this measure is reversible, prove that the probability of visiting the states (letters) $x_{1}, x-2, \ldots, x_{n}$ in that order is equal to the probability of visiting them in the opposite order.

Exercise 4. Let X_{1}, X_{2} and X_{3} be independent exponential random variables with respective rates λ_{1}, λ_{2} and λ_{3}. Compute:
(a) (0.7 pts.) $E\left(X_{1}+X_{2} \mid X_{1}<X_{2}\right)$.
(b) (0.7 pts.) $E\left(X_{2} \cdot X_{3} \mid X_{2}<X_{3}\right)$.
(c) $\left(0.7\right.$ pts.) $E\left(X_{2} \mid X_{1}<X_{2}<X_{3}\right)$.

Problem 5. Two clerks handle packages at a distribution center. Their processing times are independent and identically distributed, each following an exponential law of rate μ. Packages are processed on a firstcome first-serve basis as soon as a clerk becomes free.
(a) A package P_{3} arrives and finds both clerks busy processing packages P_{1} and P_{2}. Denote W the waiting time of package P_{3} until a clerk becomes free, T_{P} its processing time once accepted by a clerk, and $T=W+T_{P}$ the total time elapsed between the arrival of the package P_{3} and the completion of its processing.
-i- (1 pt.$)$ Determine the law of W.
-ii- (1 pt.) Prove that $E(T)=3 /(2 \mu)$.
(b) Packages arrive independently, exponentially at rate λ and wait in line till the first clerck becomes available.
-i- (0.6 pts.) Write the number of packages present as a birth-and-death chain, that is, determine the birth rates λ_{n} and death rates μ_{n}.
-ii- (1 pt.) Determine the mean time needed for having three packages present.
-iii- (1 pt.) Determine the limiting probabilities $P_{i}, i \geq 0$. Under which condition do these probabilities exist?
-iv- (0.3 pts.) Show that if $\lambda=\mu$, in the long run there is at least one server idle $2 / 3$ of the time.
Exercise 6. (1 pt.) Let $\left(\pi_{i}\right)_{0 \leq i \leq n}$ be the invariant measure for the discrete-time Markov process on $S=\{0,1, \ldots, n\}$ defined by a matrix $\left(P_{i j}\right)_{0 \leq i, j \leq n}$ with $P_{i i}=0$. Prove that the measure

$$
P_{i}=\frac{\pi_{i} / \nu_{i}}{\sum_{j} \pi_{j} / \nu_{j}} \quad 0 \leq i \leq n
$$

is then invariant for the continuous-time Markov chain with state space S, jump rates ν_{i} and transition probabilities $P_{i j}, 0 \leq i, j \leq n$.

