JUSTIFY YOUR ANSWERS!!

Please note:

- Allowed: calculator, course-content material and notes handwritten by you
- NO PHOTOCOPIED MATERIAL IS ALLOWED

- NO BOOK OR PRINTED MATERIAL IS ALLOWED

- If you use a result given as an exercise, you are expected to include (copy) its solution unless otherwise stated

NOTE: The test consists of seven questions for a total of 10.5 points plus a bonus problem worth 1.5 pts . The score is computed by adding all the credits up to a maximum of 10

Exercise 1. [Composed randomness] (0.5 pts .) Consider IID random variables $\left(X_{i}\right)_{i \geq 1}$, with $X_{i} \sim$ $\operatorname{Exp}(\lambda)$, and a further independent variable $N \sim \operatorname{Poisson}(\mu)$. Let $Y=\sum_{i=1}^{N} X_{i}$. Determine the momentgenerating function $\Phi_{Y}(t)=E\left(\mathrm{e}^{t Y}\right)$.
Exercise 2. [Generalization of a homework exercise] Consider a random variable Y with $E(Y)=\mu_{Y}$ and $\operatorname{Var}(Y)=\sigma_{Y}^{2}$. Let X be another random variable with a linear conditional mean and constant conditional variance:

$$
\begin{aligned}
E(X \mid Y) & =A+B Y \\
\operatorname{Var}(X \mid Y) & =\sigma_{X \mid Y}^{2}
\end{aligned}
$$

with $A, B, \sigma_{X \mid Y}^{2}$ constant.
(a) (0.4 pts.) Compute $\mu_{X}:=E(X)$ and deduce that

$$
E(X \mid Y)=\mu_{X}+B\left(Y-\mu_{Y}\right) .
$$

(b) (0.4 pts.) Compute $\sigma_{X}^{2}:=\operatorname{Var}(X)$ and deduce that

$$
\sigma_{X \mid Y}^{2}=\sigma_{X}^{2}-B^{2} \sigma_{Y}^{2}
$$

(c) (0.4 pts.) Compute

$$
\rho:=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E(X Y)-E(X) E(Y)}{\sigma_{X} \sigma_{Y}}
$$

and deduce that

$$
\sigma_{X \mid Y}^{2}=\left(1-\rho^{2}\right) \sigma_{X}^{2}
$$

Exercise 3. [Markov modelling] A monkey looks for food in three different regions, R_{1}, R_{2} and R_{3}. The animal invest one hour looking for food in a given region and, after this, either remains a further hour in the region or jumps to one of the other regions. Each of these possibilities are found to be equiprobable. A group of biologists decides to capture the monkey to study its health situation. To this end they install a trap in region 3 that will capture the monkey immediately upon arrival there.
(a) (0.5 pts .) Model the resulting food search of the monkey via a Markov transition matrix.
(b) Assume that the monkey starts in the morning with a visit to region 1. Determine:
-i- (0.5 pts.) The law of $T_{3}=$ capture time.
-ii- (0.5 pts .) The mean and variance of the time biologists must wait to have the monkey.
Exercise 4. [Fun with exponentials] Let X_{1}, X_{2} and X_{3} be independent exponential random variables with respective rates λ_{1}, λ_{2} and λ_{3}.
(a) (0.7 pts .) Compute $E\left(X_{2}^{2} \mid X_{1}<X_{2}<X_{3}\right)$.
(b) (0.7 pts.) Consider now the order statistics $X_{(1)}, X_{(2)}, X_{(3)}$. Compute $E\left(X_{(2)}\right)$.

Exercise 5. [Fun with Poisson processes] Let $N(t)$ be a Poisson process with rate λ. Compute
(a) (0.7 pts.) $E(N(2) \mid N(1)=4)$.
(b) (0.7 pts.) $E(N(1) \mid N(2)=4)$.
(c) $(0.7$ pts. $) \operatorname{Var}(N(2) \mid N(1)=4)$.

Exercise 6. [Multiprocessors] A computer has k processors with identical independent exponential processing times with rate μ. Instructions are processed on a first-come first-serve basis as soon as a processor becomes free. Instructions arrive with independent exponentially distributed interarrival times with rate λ.
(a) An instruction arrives itself first in line with all processors busy. Denote W the waiting time of the instruction and T_{P} its processing time once accepted by a processor. Let $T=W+T_{P}$ be the total time elapsed between the arrival of the instruction and the completion of its processing. Determine:
-i- (0.7 pts .) The law of W.
-ii- (0.7 pts .) $E(T)$.
(b) (0.5 pts.) Write the number of instructions present as a birth-and-death chain, that is, determine the birth rates λ_{n} and death rates μ_{n}.
(c) Consider $k=2$.
-i- (0.5 pts .) Determine the mean time needed for having three instructions present.
-ii- (0.6 pts.) Determine the limiting probabilities $P_{i}, i \geq 0$. Under which condition do these probabilities exist?
-iii- (0.6 pts.) Determine the values of λ / μ such that, in the long run the computer is idle $1 / 3$ of the time.

Exercise 7. [Pure-death process (0.7 pts.) A pure-death birth-and-death process is a process with $\lambda_{i}=0$ and, in consequence, $P_{i j}(t)=0$ if $i<j$. Use Kolmogorov equations to determine $P_{i i}(t)$.

Bonus problem

Bonus 1. Prove that in an irreducible chain with finite alphabet all states are recurrent. The steps are the following.
(a) (0.5 pts.) Prove that for all $n \in \mathbb{N}, n \geq 1, \ell \leq n$ and $x, y \in \mathcal{A}$,

$$
\begin{equation*}
P\left(X_{n}=y, T_{y}=\ell \mid X_{0}=x\right)=\mathbb{P}_{y y}^{n-\ell} P\left(T_{y}=\ell \mid X_{0}=x\right) . \tag{1}
\end{equation*}
$$

(b) (0.5 pts.) Show that, as a consequence, for all n and $x, y \in S$

$$
\begin{equation*}
P_{x y}^{n}=\sum_{\ell=1}^{n} \mathbb{P}_{y y}^{n-\ell} P\left(T_{y}=\ell \mid X_{0}=x\right) \tag{2}
\end{equation*}
$$

(c) (0.2 pts .) Deduce that, if every state is transient,

$$
\sum_{n} \mathbb{P}_{x y}^{n}<\infty
$$

for every $x, y \in S$.
(d) (0.2 pts.) By summing over y obtain a contradiction with the assumed stochasticity of the matrix P.
(e) (0.1 pt.) Conclude

Table 2.1

iscrete orobability distribution	Probability mass function, $p(x)$	Moment generating function, $\phi(t)$	Mean	Variance
Binomial with	$\binom{n}{x} p^{x}(1-p)^{n-x}$,	$\left(p e^{t}+(1-p)\right)^{n}$	$n p$	$n p(1-p)$
$\text { parameters } n, p,$ $0 \leq p \leq 1$	$x=0,1, \ldots, n$	$\exp \left\{\lambda\left(e^{t}-1\right)\right\}$	λ	λ
Poisson with parameter $\lambda>0$	$\begin{aligned} & e^{-\hat{1}} \overline{x!}, \\ & x=0,1,2, \ldots \end{aligned}$	$p e^{t}$	1	$1-p$
Geometric with parameter $0 \leq p \leq 1$	$\begin{gathered} p(1-p)^{x-1} \\ x=1,2, \ldots \end{gathered}$	$\overline{1-(1-p) e^{t}}$	p	p^{2}

Table 2.2

Continuous

 probability distribution
Moment

generating
function, $\phi(t)$ Mean Variance function, $f(x)$

$$
\text { over }(a, b)
$$

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{b-a}, & a<x<b \\
0, & \text { otherwise }\end{cases} \\
& f(x)= \begin{cases}\lambda e^{-\lambda x}, & x>0 \\
0, & x<0\end{cases}
\end{aligned}
$$

Exponential with
parameter $\lambda>0$
Gamma with parameters $(n, \lambda), \lambda>0$

Normal with
parameters $\left(\mu, \sigma^{2}\right)$

$$
\left.\begin{array}{rl}
f(x)= & \begin{array}{lll}
\frac{\lambda e^{-\lambda x}(\lambda x)^{n-1}}{(n-1)!}, & x \geq 0 \\
0, & x<0
\end{array} \\
f(x)= & \left(\frac{\lambda}{\lambda-t}\right)^{n} \\
& \frac{1}{\sqrt{2 \pi} \sigma} \\
& \times \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\},
\end{array} \quad \frac{n}{\lambda^{2}}, ~ e x p\left\{\mu t+\frac{\sigma^{2} t^{2}}{2}\right\} \quad \mu \quad \sigma^{2}\right)
$$

