JUSTIFY YOUR ANSWERS!!

Please note:

- Allowed: calculator, course-content material and notes handwritten by you
- NO PHOTOCOPIED MATERIAL IS ALLOWED
- NO BOOK OR PRINTED MATERIAL IS ALLOWED
- If you use a result given as an exercise, you are expected to include (copy) its solution unless otherwise stated

NOTE: The test consists of seven questions for a total of 10.5 points plus a bonus problem worth 1.5 pts. The score is computed by adding all the credits up to a maximum of 10

Exercise 1. [Composed randomness] (0.5 pts.) Consider IID random variables $(X_i)_{i\geq 1}$, with $X_i \sim \text{Exp}(\lambda)$, and a further independent variable $N \sim \text{Poisson}(\mu)$. Let $Y = \sum_{i=1}^{N} X_i$. Determine the moment-generating function $\Phi_Y(t) = E(e^{tY})$.

Exercise 2. [Generalization of a homework exercise] Consider a random variable Y with $E(Y) = \mu_Y$ and $Var(Y) = \sigma_Y^2$. Let X be another random variable with a linear conditional mean and constant conditional variance:

$$E(X \mid Y) = A + BY$$

Var $(X \mid Y) = \sigma_{X|Y}^2$

with $A, B, \sigma_{X|Y}^2$ constant.

(a) (0.4 pts.) Compute $\mu_X := E(X)$ and deduce that

$$E(X \mid Y) = \mu_X + B(Y - \mu_Y).$$

(b) (0.4 pts.) Compute $\sigma_X^2 := \operatorname{Var}(X)$ and deduce that

$$\sigma_{X|Y}^2 = \sigma_X^2 - B^2 \sigma_Y^2 \,.$$

(c) (0.4 pts.) Compute

$$\rho := \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E(XY) - E(X)E(Y)}{\sigma_X \sigma_Y}$$

and deduce that

$$\sigma_{X|Y}^2 = (1 - \rho^2) \, \sigma_X^2 \, .$$

Exercise 3. [Markov modelling] A monkey looks for food in three different regions, R_1 , R_2 and R_3 . The animal invest one hour looking for food in a given region and, after this, either remains a further hour in the region or jumps to one of the other regions. Each of these possibilities are found to be equiprobable. A group of biologists decides to capture the monkey to study its health situation. To this end they install a trap in region 3 that will capture the monkey immediately upon arrival there.

- (a) (0.5 pts.) Model the resulting food search of the monkey via a Markov transition matrix.
- (b) Assume that the monkey starts in the morning with a visit to region 1. Determine:

-i- (0.5 pts.) The law of T_3 = capture time.

-ii- (0.5 pts.) The mean and variance of the time biologists must wait to have the monkey.

Exercise 4. [Fun with exponentials] Let X_1 , X_2 and X_3 be independent exponential random variables with respective rates λ_1 , λ_2 and λ_3 .

- (a) (0.7 pts.) Compute $E(X_2^2 \mid X_1 < X_2 < X_3)$.
- (b) (0.7 pts.) Consider now the order statistics $X_{(1)}, X_{(2)}, X_{(3)}$. Compute $E(X_{(2)})$.

Exercise 5. [Fun with Poisson processes] Let N(t) be a Poisson process with rate λ . Compute

- (a) (0.7 pts.) $E(N(2) \mid N(1) = 4)$.
- (b) (0.7 pts.) $E(N(1) \mid N(2) = 4)$.
- (c) (0.7 pts.) $\operatorname{Var}(N(2) \mid N(1) = 4)$.

Exercise 6. [Multiprocessors] A computer has k processors with identical independent exponential processing times with rate μ . Instructions are processed on a first-come first-serve basis as soon as a processor becomes free. Instructions arrive with independent exponentially distributed interarrival times with rate λ .

(a) An instruction arrives itself first in line with all processors busy. Denote W the waiting time of the instruction and T_P its processing time once accepted by a processor. Let $T = W + T_P$ be the total time elapsed between the arrival of the instruction and the completion of its processing. Determine:

-i- (0.7 pts.) The law of W. -ii- (0.7 pts.) E(T).

- (b) (0.5 pts.) Write the number of instructions present as a birth-and-death chain, that is, determine the birth rates λ_n and death rates μ_n .
- (c) Consider k = 2.
 - -i- (0.5 pts.) Determine the mean time needed for having three instructions present.
 - -ii- (0.6 pts.) Determine the limiting probabilities P_i , $i \ge 0$. Under which condition do these probabilities exist?
 - -iii- (0.6 pts.) Determine the values of λ/μ such that, in the long run the computer is idle 1/3 of the time.

Exercise 7. [Pure-death process (0.7 pts.) A pure-death birth-and-death process is a process with $\lambda_i = 0$ and, in consequence, $P_{ij}(t) = 0$ if i < j. Use Kolmogorov equations to determine $P_{ii}(t)$.

Bonus problem

Bonus 1. Prove that in an irreducible chain with finite alphabet all states are recurrent. The steps are the following.

(a) (0.5 pts.) Prove that for all $n \in \mathbb{N}$, $n \ge 1$, $\ell \le n$ and $x, y \in \mathcal{A}$,

$$P(X_n = y, T_y = \ell \mid X_0 = x) = \mathbb{P}_{yy}^{n-\ell} P(T_y = \ell \mid X_0 = x) .$$
(1)

(b) (0.5 pts.) Show that, as a consequence, for all n and $x, y \in S$

$$P_{xy}^{n} = \sum_{\ell=1}^{n} \mathbb{P}_{yy}^{n-\ell} P(T_{y} = \ell \mid X_{0} = x) .$$
(2)

(c) (0.2 pts.) Deduce that, if every state is transient,

$$\sum_{n} \mathbb{P}^{n}_{xy} < \infty$$

for every $x, y \in S$.

- (d) (0.2 pts.) By summing over y obtain a contradiction with the assumed stochasticity of the matrix \mathbb{P} .
- (e) (0.1 pt.) Conclude

	1 1	1	2	1
Ta	h	e	1.	
1 a	U	l V	~	-

Table 211							
Discrete probability listribution	Probability mass function, $p(x)$	Moment generating function, $\phi(t)$	Mean	Variance			
Binomial with parameters $n, p, 0 \le p \le 1$	$ x = 0, 1, \dots, n $	$pe^t + (1-p))^n$	пр	np(1-p)			
Poisson with parameter $\lambda > 0$	$x!'' x = 0, 1, 2, \dots$	$\sup\{\lambda(e^t - 1)\}$ pe^t	λ 1	$\frac{1-p}{p^2}$			
Geometric with parameter $0 \le p \le 1$	$p(1-p)^{x-1},$ $x = 1, 2, \dots$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	p ²			
	Table 2.2						
Continuous probability distribution	Probability density function, $f(x)$	Moment generating function, ϕ	g (t) Mean	-			
Uniform over (a, b)	$f(x) = \begin{cases} \frac{1}{b-a}, \ a < x < b\\ 0, & \text{otherwise} \end{cases}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	_	$\frac{(b-a)^2}{12}$			
Exponential with	$f(x) = \begin{cases} \lambda e^{-\lambda x}, \ x > 0\\ 0, \qquad x < 0 \end{cases}$	$rac{\lambda}{\lambda-t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$			
parameters	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{n-1}}{(n-1)!}, & x \ge \\ 0, & x < \end{cases}$	$ \begin{array}{c} 0 \\ 0 \end{array} \left(\frac{\lambda}{\lambda - t}\right)^n $	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$			
$(n, \lambda), \lambda > 0$ Normal with parameters	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \\ \times \exp\{-(x-\mu)^2/2\alpha\}$	$\exp\left\{\mu t + \frac{2}{3}\right\}$	$\left.\frac{\sigma^2 t^2}{2}\right\} \mu$	σ^2			
(μ, σ^2)	$\exp\{-(x-\mu)/2x \\ -\infty < x < \infty$						