Stochastic Processes (WISB 362) - Re-take Exam

Sjoerd Dirksen

July 15, 2019, 13:30-16:30

Question 1 [6 points]

Consider a Markov chain with state space $\{1,2,3\}$ and transition matrix

$$
P=\left[\begin{array}{ccc}
1-p & p & 0 \\
q & 0 & 1-q \\
1 & 0 & 0
\end{array}\right],
$$

where $0 \leq p \leq 1$ and $0 \leq q \leq 1$.
(a) (3 points) Determine the communicating classes of the Markov chain and determine which are closed.
(b) (3 points) Compute the mean recurrence time of the state 2.

Question 2 [8 points]

Consider a Markov chain with state space $\{1,2,3\}$ and transition matrix

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{2}{3} & \frac{1}{3} \\
p & 1-p & 0
\end{array}\right],
$$

where $p=\frac{1}{16}$. Determine $p_{11}(n)$ for all $n \geq 1$.

Question 3 [6 points]

Let X_{1}, \ldots, X_{n} be independent, exponentially distributed random variables with parameter λ. Use moment generating functions to show that $S_{n}=\sum_{i=1}^{n} X_{i}$ has a gamma distribution with parameters n and λ, i.e., its probability density function is given by

$$
f_{S_{n}}(t)=\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} .
$$

Question 4 [8 points]

Suppose that customers arrive at a shop according to a Poisson process with rate λ per hour.
(a) (4 points) Compute the probability that the sixth customer arrives at least 5 hours later than the third customer.

Hint: Question 3 may be helpful.
(b) (4 points) The shop opens at 09:00. Suppose that we know that at most one customer has arrived by 10:00. Compute the probability that a total of 3 customers have arrived by $11: 00$ and a total of 5 customers have arrived by 13:00.

Question 5 [4 points]

A stochastic matrix P is called doubly stochastic if every column of the matrix sums to 1 , i.e., $\sum_{i \in I} p_{i j}=1$. Let $\left(X_{n}\right)_{n \geq 0}$ be an irreducible, aperiodic Markov chain with a doubly stochastic transition matrix and suppose that its state space consists of N states. Show that $\lim _{n \rightarrow \infty} p_{i j}(n)=\frac{1}{N}$ for all $i, j \in I$.

Question 6 [4 points]

Determine for each of the statements below whether it is true or false and give a solid motivation for your answer.
(a) (2 points) If every state of an irreducible Markov chain is null recurrent, then its state space is infinite.
(b) (2 points) Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain and let A be a subset of its state space. Let L_{A} be the last time that $\left(X_{n}\right)_{n \geq 0}$ exits A, where we set $L_{A}=\infty$ if there is no last time that the process exits A. Then L_{A} is a stopping time.

Some important probability distributions

Discrete distributions

Name	Probability mass function	
Bernoulli (p)	$\mathbb{P}(X=a)=p=1-\mathbb{P}(X=b)$	
$\operatorname{Binomial}(n, p)$	$\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$,	$k=0, \ldots, n$
$\operatorname{Geometric}(p)$	$\mathbb{P}(X=k)=(1-p)^{k-1} p$,	$k \in \mathbb{N}$
Poisson (λ)	$\mathbb{P}(X=k)=e^{-\lambda} \frac{k^{k}}{k!}$,	$k \in \mathbb{N} \cup\{0\}$

Continuous distributions

Name	Probability density function
Uniform (a, b)	$f(x)=\left\{\begin{array}{ll\|}\frac{1}{b-a} & \text { if } a<x<b \\ 0 & \text { otherwise }\end{array}\right.$
Exponential (λ)	$f(x)= \begin{cases}\lambda \mathrm{e}^{-\lambda x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}$
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-(x-\mu)^{2} /\left(2 \sigma^{2}\right)\right)$

