Deeltentamen 2 Inleiding Financiele Wiskunde, 2011-12

exercise:	1	2	3	4
points:	25	25	25	25

1. Consider a 2-period binomial model with $S_{0}=100, u=1.1, d=0.8$, and $r=0.05$. Consider an American Put option with expiration $N=2$ and strike price $K=90$.
(a) Determine the price V_{n} at time $n=0,1$ of the American put option.
(b) Determine the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.
(c) Suppose $\omega_{1} \omega_{2}=T T$. Find the values of the replicating portfolio process $\Delta_{0}, \Delta_{1}(T)$. Show that if the buyer exercises at time 1, then $X_{1}(T)=V_{1}(T)$, and if the buyer exercises at time 2, then $X_{2}(T T)=V_{2}(T T)$.
2. Consider the binomial model with up factor $u=2$, down factor $d=1 / 2$ and interest rate $r=1 / 4$. Consider a perpetual American put option with $S_{0}=2^{j}$, and $K=S_{0} 2^{-m}$. Suppose that the buyer of the option exercises the first time the price is less than or equal to $K / 2$.
(a) Show that the price at time zero of this option is given by

$$
V_{0}= \begin{cases}K-S_{0}, & \text { if } S_{0} \leq K / 2 \\ \frac{K^{2}}{4 S_{0}}, & \text { if } S_{0} \geq K\end{cases}
$$

(b) Consider the process $v\left(S_{0}\right), v\left(S_{1}\right), \cdots$ defined by

$$
v\left(S_{n}= \begin{cases}K-S_{n}, & \text { if } S_{n} \leq K / 2 \\ \frac{K^{2}}{4 S_{n}}, & \text { if } S_{n} \geq K\end{cases}\right.
$$

Show that $v\left(S_{n}\right) \geq\left(K-S_{n}\right)^{+}$for all $n \geq 0$, and that the discounted process $\left\{\left(\frac{4}{5}\right)^{n} v\left(S_{n}\right): n=0,1, \cdots\right\}$ is a supermartingale.
3. Consider a random walk M_{0}, M_{1}, \cdots with probability p for an up step and $q=1-p$ for a down step, $0<p<1$. For $a \in \mathbb{R}$, define $S_{n}^{a}=10^{-n+a M_{n}}, n=0,1,2, \cdots$.
(a) For which values of a is the the process $S_{0}^{a}, S_{1}^{a}, \cdots$ a martingale?
(b) Suppose now that $p=1 / 2$, so M_{0}, M_{1}, \cdots, is the symmetric random walk. Let $\tau_{m}=\inf \left\{n \geq 0: M_{n}=m\right\}$. Determine the value of $E\left(S_{\tau_{m}}^{a}\right)$.
4. Consider a 3-period (non constant interest rate) binomial model with interest rate process R_{0}, R_{1}, R_{2} defined by

$$
R_{0}=0, R_{1}\left(\omega_{1}\right)=.05+.01 H_{1}\left(\omega_{1}\right), R_{2}\left(\omega_{1}, \omega_{2}\right)=.05+.01 H_{2}\left(\omega_{1}, \omega_{2}\right)
$$

where $H_{i}\left(\omega_{1}, \cdots, \omega_{i}\right)$ equals the number of heads appearing in the first i coin tosses $\omega_{1}, \cdots, \omega_{i}$. Suppose that the risk neutral measure is given by $\widetilde{P}(H H H)=\widetilde{P}(H H T)=$ $\underline{1} / 8, \widetilde{P}(H T H)=\widetilde{P}(T H H)=\widetilde{P}(T H T)=1 / 12, \widetilde{P}(H T T)=1 / 6, \widetilde{P}(T T H)=1 / 9$, $\widetilde{P}(T T T)=2 / 9$.
(a) Calculate $B_{1,2}$ and $B_{1,3}$, the time one price of a zero coupon maturing at time two and three respectively.
(b) Consider a 3 -period interest rate swap. Find the 3-period swap rate $S R_{3}$, i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
(c) Consider a 3-period floor that makes payments $F_{n}=\left(.055-R_{n-1}\right)^{+}$at time $n=1,2,3$. Find Floor $_{3}$, the price of this floor.

