## Oefen Deeltentamen 2 Inleiding Financiele Wiskunde, 2011-12

1. Consider a 2-period binomial model with $S_{0}=100, u=1.2, d=0.7$, and $r=0.1$. Consider now an Asian American put option with expiration $N=2$, and intrinsic value $G_{n}=95-\frac{S_{0}+\cdots+S_{n}}{n+1}, n=0,1,2$.
(a) Determine the price $V_{n}$ at time $n=0,1$ of this American option.
(b) Find the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.
(c) Suppose it is possible to buy this option at a price $C>V_{0}$, where $V_{0}$ is your answer from part (a). Construct an explicit arbitrage strategy.
2. Let $M_{0}, M_{1}, \cdots$, be the symmetric random walk, i.e. $M_{0}=0$, and $M_{n}=\sum_{i=1}^{n} X_{i}$, where

$$
X_{i}= \begin{cases}1, & \text { if } \omega_{i}=H \\ -1, & \text { if } \omega_{i}=T\end{cases}
$$

for $i \geq 1$. Let $m \geq 2$ be an integer, and let $k \in\{1, \cdots, m-1\}$. Define $Y_{0}=k$, and

$$
Y_{n+1}=\left(Y_{n}+X_{n+1}\right) \mathbb{I}_{\left\{Y_{n} \notin\{0, m\}\right\}}+Y_{n} \mathbb{I}_{\left\{Y_{n} \in\{0, m\}\right\}},
$$

for $n \geq 0$.
(a) Show that $Y_{0}, Y_{1}, \cdots$ is a martingale.
(b) Let $T=\inf \left\{n \geq 1: Y_{n} \in\{0, m\}\right\}$. Using the the Optional Sampling Theorem show that $E\left(Y_{T}\right)=E\left(Y_{0}\right)=k$.
(c) Prove that $P\left(Y_{T}=0\right)=\frac{m-k}{m}$.
3. Consider the binomial model with up factor $u=2$, down factor $d=1 / 2$ and interest rate $r=1 / 4$. Consider a perpetual American put option with $S_{0}=2^{j}$, and $K=S_{0} 2^{-m}$. Suppose that the buyer of the option exercises the first time the price is less than or equal to $K / 2$.
(a) Show that the price at time zero of this option is given by

$$
V_{0}= \begin{cases}K-S_{0}, & \text { if } S_{0} \leq K / 2 \\ \frac{K^{2}}{4 S_{0}}, & \text { if } S_{0} \geq K\end{cases}
$$

(b) Consider the process $v\left(S_{0}\right), v\left(S_{1}\right), \cdots$ defined by

$$
v\left(S_{n}= \begin{cases}K-S_{n}, & \text { if } S_{n} \leq K / 2 \\ \frac{K^{2}}{4 S_{n}}, & \text { if } S_{n} \geq K\end{cases}\right.
$$

Show that $v\left(S_{n}\right) \geq\left(K-S_{n}\right)^{+}$for all $n \geq 0$, and that the discounted process $\left\{\left(\frac{4}{5}\right)^{n} v\left(S_{n}\right): n=0,1, \cdots\right\}$ is a supermartingale.
4. Consider a 3-period (non constant interest rate) binomial model with interest rate process $R_{0}, R_{1}, R_{2}$ defined by

$$
R_{0}=0, R_{1}\left(\omega_{1}\right)=0.02 f\left(\omega_{1}\right), R_{2}\left(\omega_{1}, \omega_{2}\right)=0.02 f\left(\omega_{1}\right) f\left(\omega_{2}\right)
$$

where $f(H)=3$, and $f(T)=2$. Suppose that the risk neutral measure is given by $\widetilde{P}(H H H)=\widetilde{P}(H T T)=1 / 10, \widetilde{P}(H H T)=\widetilde{P}(H T H)=1 / 5, \widetilde{P}(T H H)=$ $\widetilde{P}(T H T)=1 / 15, \widetilde{P}(T T H)=\widetilde{P}(T T T)=2 / 15$.
(a) Calculate the time one price $B_{1,3}$ of a zero coupon bond with maturity $m=3$.
(b) Consider a 3 -period interest rate swap. Find the 3 -period swap rate $S R_{3}$, i.e. the value of $K$ that makes the time zero no arbitrage price of the swap equal to zero.
(c) Consider a 3-period Cap that makes payments $C_{n}=\left(R_{n-1}-0.1\right)^{+}$at time $n=1,2,3$. Find $\mathrm{Cap}_{3}$, the price of this Cap.

