Oefen Deeltentamen 2 Inleiding Financiele Wiskunde, 2011-12

- 1. Consider a 2-period binomial model with $S_0 = 100$, u = 1.2, d = 0.7, and r = 0.1. Consider now an Asian American put option with expiration N = 2, and intrinsic value $G_n = 95 \frac{S_0 + \cdots + S_n}{n+1}$, n = 0, 1, 2.
 - (a) Determine the price V_n at time n = 0, 1 of this American option.
 - (b) Find the optimal exercise time $\tau^*(\omega_1\omega_2)$ for all $\omega_1\omega_2$.
 - (c) Suppose it is possible to buy this option at a price $C > V_0$, where V_0 is your answer from part (a). Construct an explicit arbitrage strategy.
- 2. Let M_0, M_1, \dots , be the symmetric random walk, i.e. $M_0 = 0$, and $M_n = \sum_{i=1}^n X_i$, where

$$X_i = \begin{cases} 1, & \text{if } \omega_i = H, \\ -1, & \text{if } \omega_i = T, \end{cases}$$

for $i \geq 1$. Let $m \geq 2$ be an integer, and let $k \in \{1, \dots, m-1\}$. Define $Y_0 = k$, and

$$Y_{n+1} = (Y_n + X_{n+1}) \mathbb{I}_{\{Y_n \notin \{0, m\}\}} + Y_n \mathbb{I}_{\{Y_n \in \{0, m\}\}},$$

for $n \geq 0$.

- (a) Show that Y_0, Y_1, \cdots is a martingale.
- (b) Let $T = \inf\{n \geq 1 : Y_n \in \{0, m\}\}$. Using the Optional Sampling Theorem show that $E(Y_T) = E(Y_0) = k$.
- (c) Prove that $P(Y_T = 0) = \frac{m-k}{m}$.
- 3. Consider the binomial model with up factor u = 2, down factor d = 1/2 and interest rate r = 1/4. Consider a perpetual American put option with $S_0 = 2^j$, and $K = S_0 2^{-m}$. Suppose that the buyer of the option exercises the first time the price is less than or equal to K/2.
 - (a) Show that the price at time zero of this option is given by

$$V_0 = \begin{cases} K - S_0, & \text{if } S_0 \le K/2, \\ \frac{K^2}{4S_0}, & \text{if } S_0 \ge K. \end{cases}$$

(b) Consider the process $v(S_0), v(S_1), \cdots$ defined by

$$v(S_n = \begin{cases} K - S_n, & \text{if } S_n \le K/2, \\ \frac{K^2}{4S_n}, & \text{if } S_n \ge K. \end{cases}$$

Show that $v(S_n) \geq (K - S_n)^+$ for all $n \geq 0$, and that the discounted process $\left\{ \left(\frac{4}{5} \right)^n v(S_n) : n = 0, 1, \cdots \right\}$ is a supermartingale.

4. Consider a 3-period (non constant interest rate) binomial model with interest rate process R_0, R_1, R_2 defined by

$$R_0 = 0, R_1(\omega_1) = 0.02f(\omega_1), R_2(\omega_1, \omega_2) = 0.02f(\omega_1)f(\omega_2)$$

where f(H)=3, and f(T)=2. Suppose that the risk neutral measure is given by $\widetilde{P}(HHH)=\widetilde{P}(HTT)=1/10,\ \widetilde{P}(HHT)=\widetilde{P}(HTH)=1/5,\ \widetilde{P}(THH)=\widetilde{P}(TTT)=2/15.$

- (a) Calculate the time one price $B_{1,3}$ of a zero coupon bond with maturity m=3.
- (b) Consider a 3-period interest rate swap. Find the 3-period swap rate SR_3 , i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
- (c) Consider a 3-period Cap that makes payments $C_n = (R_{n-1} 0.1)^+$ at time n = 1, 2, 3. Find Cap₃, the price of this Cap.