Uitwerkingen Hertentamen Inleiding Financiele Wiskunde, 2011-12

* Punten per opgave:

opgave:	1	2	3	4
punten:	30	20	20	30

1. Consider a 2-period binomial model with $S_{0}=20, u=1.3, d=0.9$, and $r=0.1$. Suppose the real probability measure P satisfies $P(H)=p=\frac{1}{3}=1-P(T)$.
(a) Consider an Asian European option with payoff $V_{2}=\left(\left(S_{1}+S_{2}\right) / 2-20\right)^{+}$. Determine the price V_{n} at time $n=0,1$.
(b) Suppose $\omega_{1} \omega_{2}=H T$, find the values of the portfolio process $\Delta_{0}, \Delta_{1}(H)$ so that the corresponding wealth process satisfies $X_{0}=V_{0}$ (your answer in part (a)) and $X_{2}(H T)=V_{2}(H T)$.
(c) Consider the utility function $U(x)=4 x^{1 / 4}(x>0)$. Show that the random variable $X=X_{2}$ (which is a function of the two coin tosses) that maximizes $E(U(X))$ subject to the condition that $\widetilde{E}\left(\frac{X}{(1+r)^{2}}\right)=X_{0}$ is given by

$$
X=X_{2}=\frac{(1.1)^{2} X_{0}}{Z^{4 / 3} E\left(Z^{-1 / 3}\right)}
$$

(d) Consider part (c) and assume $X_{0}=20$. Determine the value of the optimal portfolio process $\left\{\Delta_{0}, \Delta_{1}\right\}$ and the value of the corresponding wealth process $\left\{X_{0}, X_{1}, X_{2}\right\}$.
(e) Consider now an Asian American put option with expiration $N=2$, and intrinsic value $G_{n}=20-\frac{S_{0}+\cdots+S_{n}}{n+1}, n=0,1,2$. Determine the price V_{n} at time $n=0,1$ of the American option. Find the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.

Solution (a): We first calculate the risk-neutral probability measure \widetilde{P}, we have $\widetilde{P}(H)=\widetilde{p}=1 / 2$ and $\widetilde{P}(T)=\widetilde{q}=1 / 2$. We start with the value of V_{2}, we have $V_{2}(H H)=9.9, V_{2}(H T)=4.7, V_{2}(T H)=0.7, V_{2}(T T)=0$. Then

$$
V_{1}(H)=\frac{1}{1.1}\left[\frac{1}{2}(9.9)+\frac{1}{2}(4.7)\right]=6.64,
$$

and

$$
V_{1}(T)=\frac{1}{1.1}\left[\frac{1}{2}(0.7)+\frac{1}{2}(0)\right]=0.32
$$

leading to

$$
V_{0}=\frac{1}{1.1}\left[\frac{1}{2}(6.64)+\frac{1}{2}(0.32)\right]=3.16
$$

Solution (b): If $\omega_{1} \omega_{2}=H T$, then

$$
\Delta_{0}=\frac{V_{1}(H)-V_{1}(T)}{S_{1}(H)-S_{1}(T)}=\frac{6.64-0.32}{26-18}=0.79
$$

and

$$
\Delta_{1}(H)=\frac{V_{1}(H H)-V_{1}(H T)}{S_{1}(H H)-S_{1}(H T)}=\frac{9.94-4.7}{33.8-23.4}=0.5 .
$$

Leading to

$$
\left.X_{1}(H)=\Delta_{0} S 1_{(} T\right)+1.1\left(V_{0}-\Delta_{0} S_{0}\right)=6.64
$$

and

$$
X_{2}(T H)=\Delta_{1}(T) S_{2}(T H)+1.1\left(X_{1}(T)-\Delta_{1}(T) S_{1}(T)\right)=4.7
$$

Solution (d): Notice that the function $U(x)=4 x^{1 / 4}, x>0$ is strict concave with $U^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. We apply Theorem 3.3.6, we find that the inverse I of U^{\prime} is given by $I(x)=x^{-4 / 3}$. Thus, the optimal solution is given by

$$
X_{2}=X=I\left(\frac{\lambda Z}{(1.1)^{2}}\right)=\frac{(1.1)^{8 / 3}}{\lambda^{4 / 3} Z^{4 / 3}}
$$

and satisfies the constraint

$$
X_{0}=E\left(\frac{X Z}{(1.1)^{2}}\right)=\frac{(1.1)^{2 / 3}}{\lambda^{4 / 3}} E\left(Z^{-1 / 3}\right)
$$

Hence, $\lambda^{4 / 3}=\frac{(1.1)^{2 / 3} E\left(Z^{-1 / 3}\right)}{X_{0}}$, and

$$
X=\frac{X_{0}(1.1)^{2}}{Z^{4 / 3} E\left(Z^{-1 / 3}\right)}
$$

Solution (e): To find the optimal portfolio and corresponding wealth processes, we first determine explicitly the the random variable $X=X_{2}$, and then we apply Theorem 1.2.2 with $X_{0}=20$. We begin by find the Radon Nikodym derivative Z. We have

$$
Z(H H)=\frac{9}{4}, Z(H T)=Z(T H)=\frac{9}{8}, Z(T T)=\frac{9}{16} .
$$

Next, we find

$$
E\left(Z^{-1 / 3}\right)=\left(\frac{4}{9}\right)^{1 / 3} \times \frac{1}{9}+\left(\frac{8}{9}\right)^{1 / 3} \times \frac{2}{9}+\left(\frac{8}{9}\right)^{1 / 3} \times \frac{2}{9}+\left(\frac{16}{9}\right)^{1 / 3} \times \frac{4}{9}=1.05 .
$$

Thus,

$$
X=X_{2}=\frac{X_{0}(1.1)^{2}}{Z^{4 / 3} E\left(Z^{-1 / 3}\right)}=\frac{23.05}{Z^{4 / 3}}
$$

This leads to

$$
X_{2}(H H)=7.81, X_{2}(H T)=X_{2}(T H)=19.70, X_{2}(T T)=50.11
$$

Hence,

$$
\begin{aligned}
& X_{1}(H)=\frac{1}{1.1}\left[\frac{1}{2}(7.81)+\frac{1}{2}(19.70)\right]=12.50 \\
& X_{1}(T)=\frac{1}{1.1}\left[\frac{1}{2}(19.70)+\frac{1}{2}(50.11)\right]=31.13
\end{aligned}
$$

Notice that

$$
X_{0}=\frac{1}{1.1}\left[\frac{1}{2}(12.50)+\frac{1}{2}(31.73)\right]=20.1
$$

as required. The optimal portfolio is given by

$$
\begin{aligned}
\Delta_{0} & =\frac{X_{1}(H)-X_{1}(T)}{S_{1}(H)-S_{1}(T)}=\frac{12.50-31.73}{26-18}=-2.40, \\
\left.\Delta_{(} H\right) & =\frac{X_{2}(H H)-X_{2}(H T)}{S_{2}(H H)-S_{2}(H T)}=\frac{7.81-19.70}{33.8-23.4}=-1.14, \\
\Delta_{1}(T) & =\frac{X_{2}(T H)-X_{2}(T T)}{S_{2}(T H)-S_{2} T(T)}=\frac{19.70-50.11}{23.4-16.2}=-4.22 .
\end{aligned}
$$

Solution (e): The intrinsic value process is given by

$$
\begin{gathered}
G_{0}=0, G_{1}(H)=-3, G_{1}(T)=1, \\
G_{2}(H H)=-6.6, G_{2}(H T)=-3.13, G_{2}(T H)=-0.47, G_{2}(T T)=1.93
\end{gathered}
$$

The payoff at time 2 is given by

$$
V_{2}(H H)=V_{2}(H T)=V_{2}(T H)=0, V_{2}(T T)=1.93
$$

Applying the American algorithm, we get

$$
\begin{gathered}
V_{1}(H)=\max \left(-3, \frac{1}{1.1}\left[\frac{1}{2} \times 0+\frac{1}{2} \times 0\right]\right)=0 . \\
V_{1}(T)=\max \left(1, \frac{1}{1.1}\left[\frac{1}{2} \times 0+\frac{1}{2} \times 1.93\right]\right)=\max (1,0.88)=1 . \\
V_{0}=\max \left(0, \frac{1}{1.1}\left[\frac{1}{2} \times 0+\frac{1}{2} \times 1\right]\right)=\max (0,0.455)=0.455 .
\end{gathered}
$$

The optimal exercise time is given by

$$
\tau^{*}(H H)=\tau^{*}(H T)=\infty, \tau^{*}(T H)=\tau^{*}(T T)=1 .
$$

2. Consider a 3-period (non constant interest rate) binomial model with interest rate process R_{0}, R_{1}, R_{2} defined by

$$
R_{0}=0, R_{1}\left(\omega_{1}\right)=.05+.01 H_{1}\left(\omega_{1}\right), R_{2}\left(\omega_{1}, \omega_{2}\right)=.05+.01 H_{2}\left(\omega_{1}, \omega_{2}\right)
$$

where $H_{i}\left(\omega_{1}, \cdots, \omega_{i}\right)$ equals the number of heads appearing in the first i coin tosses $\omega_{1}, \cdots, \omega_{i}$. Suppose that the risk neutral measure is given by $\widetilde{P}(H H H)=\widetilde{P}(H H T)=$ $1 / 8, \widetilde{P}(H T H)=\widetilde{P}(T H H)=\widetilde{P}(T H T)=1 / 12, \widetilde{P}(H T T)=1 / 6, \widetilde{P}(T T H)=1 / 9$, $\widetilde{P}(T T T)=2 / 9$.
(a) Calculate $B_{1,2}$ and $B_{1,3}$, the time one price of a zero coupon maturing at time two and three respectively.
(b) Consider a 3 -period interest rate swap. Find the 3 -period swap rate $S R_{3}$, i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
(c) Consider a 3-period floor that makes payments $F_{n}=\left(.055-R_{n-1}\right)^{+}$at time $n=1,2,3$. Find Floor $_{3}$, the price of this floor.

Solution (a): We first calcultate the values of R_{0}, R_{1}, R_{2} and D_{1}, D_{2}, D_{3} in the following tables:

$\omega_{1} \omega_{2}$	R_{0}	R_{1}	R_{2}
$H H$	0	0.06	0.07
$H T$	0	0.06	0.06
$T H$	0	0.05	0.06
$T T$	0	0.05	0.05

$\omega_{1} \omega_{2}$	$\frac{1}{1+R_{0}}$	$\frac{1}{1+R_{1}}$	$\frac{1}{1+R_{2}}$	D_{1}	D_{2}	D_{3}	\widetilde{P}
$H H$	1	$\frac{1}{1.06}$	$\frac{1}{1.07}$	1	$\frac{1}{1.06}$	$\frac{1}{1.1342}$	$\frac{1}{4}$
$H T$	1	$\frac{1}{1.06}$	$\frac{1}{1.06}$	1	$\frac{1}{1.06}$	$\frac{1}{1.1236}$	$\frac{1}{4}$
$T H$	1	$\frac{1}{1.05}$	$\frac{1}{1.06}$	1	$\frac{1}{1.05}$	$\frac{1}{1.113}$	$\frac{1}{6}$
$T T$	1	$\frac{1}{1.05}$	$\frac{1}{1.05}$	1	$\frac{1}{1.05}$	$\frac{1}{1.1025}$	$\frac{1}{3}$

Since $D_{1}=1$ and D_{2} is known at time 1 , then $B_{1,2}=\widetilde{E}_{1}\left(D_{2}\right)=D_{2}$. This gives $B_{1,2}(H)=1 / 1.06$ and $B_{1,2}(T)=1 / 1.05$.
Now, D_{3} depends on the first two coin tosses only, and since $D_{1}=1$ we have

$$
\begin{aligned}
B_{1,3}(H)=\widetilde{E}_{1}\left(D_{3}\right)(H) & =D_{3}(H H) \widetilde{P}\left(\omega_{2}=H \mid \omega_{1}=H\right)+D_{3}(H T) \widetilde{P}\left(\omega_{2}=T \mid \omega_{1}=H\right) \\
& =\frac{1}{1.1342} \frac{1}{2}+\frac{1}{1.1236} \frac{1}{2}=0.8858,
\end{aligned}
$$

and

$$
\begin{aligned}
B_{1,3}(T)=\widetilde{E}_{1}\left(D_{3}\right)(T) & =D_{3}(T H) \widetilde{P}\left(\omega_{2}=H \mid \omega_{1}=T\right)+D_{3}(T T) \widetilde{P}\left(\omega_{2}=T \mid \omega_{1}=T\right) \\
& =\frac{1}{1.113} \frac{1}{3}+\frac{1}{1.1025} \frac{2}{3}=0.9499 .
\end{aligned}
$$

Solution (b): From Theorem 6.3.7, we know that

$$
S R_{3}=\frac{1-B_{0,3}}{B_{0,1}+B_{0,2}+B_{0,3}} .
$$

Now,

$$
B_{0,1}=\widetilde{E}\left(D_{1}\right)=1,
$$

D_{2} depends on the ω_{1} only, so

$$
\begin{aligned}
B_{0,2}=\widetilde{E}\left(D_{2}\right) & =\frac{1}{1.06} \widetilde{P}\left(\omega_{1}=H\right)+\frac{1}{1.05} \widetilde{P}\left(\omega_{1}=T\right) \\
& =\frac{1}{1.06} \frac{1}{2}+\frac{1}{1.05} \frac{1}{2}=0.94789
\end{aligned}
$$

Now, D_{3} depends only on ω_{1}, ω_{2}, hence

$$
\begin{aligned}
B_{0,3}=\widetilde{E}\left(D_{3}\right) & =\frac{1}{1.1342} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=H\right)+\frac{1}{1.1236} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=T\right) \\
& +\frac{1}{1.113} \widetilde{P}\left(\omega_{1}=T, \omega_{2}=H\right)+\frac{1}{1.1025} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=H\right) \\
& =\frac{1}{1.1342} \frac{1}{4}+\frac{1}{1.1236} \frac{1}{4}+\frac{1}{1.113} \frac{1}{6}+\frac{1}{1.1025} \frac{1}{3} \\
& =0.895 .
\end{aligned}
$$

Thus,

$$
S R_{3}=\frac{1-B_{0,3}}{B_{0,1}+B_{0,2}+B_{0,3}}=\frac{1-0.91787}{2.86576}=0.0287
$$

Solution (c): From Definition 6.3 .8 we have

$$
\text { Floor }_{3}=\sum_{n=1}^{3} \widetilde{E}\left(D_{n}\left(0.055-R_{n-1}\right)^{+} .\right)
$$

We display the values of $\left.\left(0.055-R_{n-1}\right)^{+}\right)$in a table

$\omega_{1} \omega_{2}$	$\left(0.055-R_{0}\right)^{+}$	$\left(0.055-R_{1}\right)^{+}$	$\left(0.055-R_{2}\right)^{+}$
$H H$	0.055	0	0
$H T$	0.055	0	0
$T H$	0.055	0.005	0
$T T$	0.055	0.005	0.005

Thus,

$$
\widetilde{E}\left(D_{1}\left(0.055-R_{0}\right)^{+}\right)=0.055,
$$

$\widetilde{E}\left(D_{2}\left(0.055-R_{1}\right)^{+}\right)=D_{2}(H)(0) P(H)+D_{2}(T)(0.005) P(T)=\frac{1}{1.05}(0.005) \frac{1}{2}=0.00238$, and

$$
\widetilde{E}\left(D_{3}\left(0.055-R_{2}\right)^{+}\right)=D_{3}(T T)(0.055) P(T T)=\frac{1}{1.1025}(0.005) \frac{1}{3}=0.00151
$$

Therefore,

$$
\text { Floor }_{3}=0.055+0.00238+0.00151=0.05889 .
$$

3. Consider the binomial model with $u=2^{1}, d=2^{-1}$, and $r=1 / 4$, and consider a perpetual American put option with $S_{0}=10$ and $K=12$. Suppose that Alice and Bob each buy such an option
(a) Suppose that Alice uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0 ?
(b) Suppose that Bob uses the strategy of exercising the first time the price reaches 2.5 euros. What should then the price be at time 0 ?
(c) What is the probability that the price reaches 20 euros for the first time at time $n=5$?

Solution (a): The buyer is using the exercise policy τ_{-2}. Hence, the price at time 0 should be

$$
\begin{aligned}
V_{0}=V^{\tau_{-2}} & =\widetilde{E}\left(\left(\frac{4}{5}\right)^{\tau_{-2}}\left(24-S_{\tau_{-2}}\right)\right) \\
& =\left(\frac{1}{2}\right)^{2}(24-5)=4.75 .
\end{aligned}
$$

Solution (b): The buyer is using the exercise policy τ_{-4}. Hence, the price at time 0 should be

$$
\begin{aligned}
V_{0}=V^{\tau_{-4}} & =\widetilde{E}\left(\left(\frac{4}{5}\right)^{\tau_{-4}}\left(24-S_{\tau_{-4}}\right)\right) \\
& =\left(\frac{1}{2}\right)^{4}(24-1.25)=1.42 .
\end{aligned}
$$

Solution (c): The probability that the price reaches 80 for the first time at time 5 is equal to $P\left(\left\{\tau_{2}=5\right\}\right)=0$ since it is impossible for the random walk to reach level 2 after an odd number of steps.
4. Consider a random walk M_{0}, M_{1}, \cdots with probability p for an up step and $q=1-p$ for a down step, $0<p<1$. For $a \in \mathbb{R}$ and $b>1$, define $S_{n}^{a}=b^{-n} 2^{a M_{n}}, n=$ $0,1,2, \cdots$.
(a) For which values of a is the the process $S_{0}^{a}, S_{1}^{a}, \cdots$ a (i) martingale, (ii) supermartingale, (iii) submartingale?
(b) Show that the process $S_{0}^{a}, S_{1}^{a}, \cdots$ is a Markov Process.
(c) Suppose now that $p=1 / 2$, so M_{0}, M_{1}, \cdots, is the symmetric random walk. Let $\tau_{m}=\inf \left\{n \geq 0: M_{n}=m\right\}$. Determine the value of $E\left(S_{\tau_{m}}^{a}\right)$.

Solution (a): First note that the process $\left(S_{n}^{a}\right)$ is adjusted, and

$$
S_{n+1}^{a}=b^{-n-1} 2^{a M_{n}+a X_{n+1}}=S_{n}^{a} b^{-1} 2^{a X_{n+1}} .
$$

Since X_{n+1} is independent of the first n tosses we have

$$
E_{n}\left(2^{a X_{n+1}}\right)=E\left(2^{a X_{n+1}}\right)=2^{a} p+2^{-a} q .
$$

Thus,

$$
E_{n}\left(S_{n+1}^{a}\right)=S_{n}^{a} b^{-1}\left(2^{a} p+2^{-a} q\right)
$$

(i) For the process to be a martingale, we need to find the values of a such that

$$
b^{-1}\left(2^{a} p+2^{-a} q\right)=1
$$

or equivalently,

$$
p 2^{2 a}-b 10^{a}+q=0 .
$$

Solving, we get

$$
2^{a}=\frac{b \pm \sqrt{b^{2}-4 p q}}{2 p}
$$

implying

$$
a=\log _{2}\left(\frac{b \pm \sqrt{b^{2}-4 p q}}{2 p}\right) .
$$

(ii) For the process to be a submartingale, we need to find the values of a such that

$$
b^{-1}\left(2^{a} p+2^{-a} q\right) \leq 1
$$

or equivalently,

$$
p 2^{2 a}-b 10^{a}+q \leq 0 .
$$

Solving, we get

$$
2^{a} \leq \frac{b-\sqrt{b^{2}-4 p q}}{2 p}, \quad \text { or } 2^{a} \geq \frac{b+\sqrt{b^{2}-4 p q}}{2 p}
$$

implying

$$
a \leq \log _{2}\left(\frac{b-\sqrt{b^{2}-4 p q}}{2 p}\right) \quad \text { or } a \geq \log _{2}\left(\frac{b \sqrt{b^{2}-4 p q}}{2 p}\right)
$$

(iii) For the process to be a supermartingale, we need to find the values of a such that

$$
b^{-1}\left(2^{a} p+2^{-a} q\right) \geq 1
$$

or equivalently,

$$
p 2^{2 a}-b 10^{a}+q \geq 0
$$

Solving, we get

$$
\frac{b-\sqrt{b^{2}-4 p q}}{2 p} \leq 2^{a} \leq \frac{b+\sqrt{b^{2}-4 p q}}{2 p}
$$

implying

$$
\log _{2}\left(\frac{b-\sqrt{b^{2}-4 p q}}{2 p}\right) \leq a \leq \log _{2}\left(\frac{b \sqrt{b^{2}-4 p q}}{2 p}\right)
$$

Solution (b): Note that $S_{n+1}^{a}=S_{n}^{a} b^{-1} 2^{a X_{n+1}}$. Let f be any real function, define a function F on \mathbb{R}^{2} by $F(s, x)=f\left(s b^{-1} 2^{a x}\right)$. Then, $F\left(S_{n}^{a}, X_{n+1}\right)=f\left(S_{n+1}^{a}\right)$. Notice
that S_{n}^{a} depends on the first n tosses while X_{n+1} is independent of the first n tosses. By the Independence Lemma, we have

$$
E_{n}\left(f\left(S_{n+1}^{a}\right)\right)=E_{n}\left(F\left(S_{n}^{a}, X_{n+1}\right)\right)=g\left(S_{n}^{a}\right),
$$

where

$$
g(s)=E\left(F\left(s, X_{n+1}\right)\right)=E\left(f\left(s b^{-1} 2^{a X_{n+1}}\right)\right)=p f\left(s b^{-1} 2^{a}\right)+q f\left(s b^{-1} 2^{-a}\right)
$$

In particular,

$$
g\left(S_{n}^{a}\right)=p f\left(S_{n}^{a} b^{-1} 2^{a}\right)+q f\left(S_{n}^{a} b^{-1} 2^{-a}\right)
$$

Thus, $\left(S_{n}^{a}\right)$ is a Markov Process.
Solution (c): Observe that $S_{\tau_{m}}^{a}=b^{-\tau_{m}} 2^{a M_{\tau_{m}}}=b^{-\tau_{m}} 2^{m a}$. By Theorem 5.2.3 we have

$$
E\left(S_{\tau_{m}}^{a}\right)=2^{m a} E\left(b^{\tau_{n}}\right)=b^{m a}\left(\frac{1-\sqrt{1-b^{2}}}{b}\right)^{m} .
$$

