Uitwerkingen Deeltentamen 1 Inleiding Financiele Wiskunde, 2011-12

* Punten per opgave:

opgave:	1	2	3
punten:	50	30	20

1. Consider a 2-period binomial model with $S_{0}=100, u=1.2, d=0.9$, and $r=0.1$. Suppose the real probability measure P satisfies $P(H)=p=\frac{1}{2}=P(T)$.
(a) Consider an option with payoff $V_{2}=\max \left(S_{1}, S_{2}\right)-100$. Determine the price V_{n} at time $n=0,1$.
(b) Suppose $\omega_{1} \omega_{2}=H T$, find the values of the portfolio process $\Delta_{0}, \Delta_{1}(H)$ so that so that the corresponding wealth process satisfies $X_{0}=V_{0}$ (your answer in part (a)) and $X_{2}(H T)=V_{2}(H T)$.
(c) Suppose a trader is selling the above option for a price $T>V_{0}$. Explain how the trader can perform arbitrage, i.e. with begin wealth equals to zero he can build a portfolio that has at time 2 a non-negative value with probability 1.
(d) Consider the utility function $U(x)=\sqrt{x}(x>0)$. Show that the random variable $X=X_{2}$ (which is a function of the two coin tosses) that maximizes $E(U(X))$ subject to the condition that $\widetilde{E}\left(\frac{X}{(1+r)^{2}}\right)=X_{0}$ is given by

$$
X=X_{2}=\frac{(1.1)^{2} X_{0}}{Z^{2} E\left(Z^{-1}\right)}
$$

where Z is the Radon Nikodym derivative of \widetilde{P} with respect to P.
(e) Assume in part (e) that $X_{0}=100$. Determine the value of the optimal portfolio process $\left\{\Delta_{0}, \Delta_{1}\right\}$ and the value of the corresponding wealth process $\left\{X_{0}, X_{1}, X_{2}\right\}$.
2. Consider the N-period Binomial model with risk neutral probability measure \widetilde{P}. Suppose $X_{0}, X_{1}, \cdots, X_{N}$ is an adapted process satisfying $X_{i}>-1$ for all $i=$ $0,1, \cdots, N$. Define a process $Y_{0}, Y_{1}, \cdots, Y_{N}$ by

$$
Y_{0}=1, \quad \text { and } Y_{n}=\frac{1}{\left(1+X_{0}\right) \cdots\left(1+X_{n-1}\right)}, n=1, \cdots, N
$$

(a) Let $U_{n}=\widetilde{E}_{n}\left[\frac{Y_{N}}{Y_{n}}\right], n=0,1, \cdots, N$. Show that the process $Y_{0} U_{0}, Y_{1} U_{1}, \cdots, Y_{N} U_{N}$ is a martingale with respect to \widetilde{P}.
(b) Let $\Delta_{0}, \cdots, \Delta_{N-1}$ be an adapted process, and W_{0} a fixed positive real number. Define for $n=0,1, \cdots, N-1$,

$$
W_{n+1}=\Delta_{n} U_{n+1}+\left(1+X_{n}\right)\left(W_{n}-\Delta_{n} U_{n}\right)
$$

Show that the process

$$
Y_{0} W_{0}, Y_{1} W_{1}, \cdots, Y_{N} W_{N}
$$

is a martingale with respect to \widetilde{P}.
(c) Let U_{n} be as given in part (a). Set $I_{0}=0$ and define $I_{n}=\sum_{j=0}^{n-1} Y_{j+1}\left(U_{j+1}-U_{j}\right)$, $n=1, \cdots, N$. Show that $I_{0}, I_{1}, \cdots, I_{N}$ is a martingale with respect to \widetilde{P}.
3. Consider the N-period binomial model, with expiration process N, up factor u, down factor d and interst rate r. Let \widetilde{P} be the risk neutral probability and P the real probability. We denote by $p=P(H)$ and $\widetilde{p}=\widetilde{P}(H)$. Let $S_{0}, S_{1}, \cdots, S_{N}$ be the corresponding price process.
(a) Define $Y_{n}=\sum_{k=0}^{n} S_{k}$. Show that the process

$$
\left(Y_{0}, S_{0}\right),\left(Y_{1}, S_{1}\right), \ldots,\left(Y_{N}, S_{N}\right)
$$

is Markov with respect to P and \widetilde{P}.
(b) Let $V_{N}=\left(S_{N}-\frac{Y_{N}}{N+1}\right)^{+}$. Show that for each $n=0,1, \cdots, N$, there exists a function f_{n} such that

$$
E_{n}\left(Z V_{N}\right)=Z_{n}(1+r)^{N-n} f_{n}\left(Y_{n}, S_{n}\right)
$$

where Z is the Radon-Nikodym derivative of \tilde{P} with respect to P, and $Z_{n}=$ $E_{n}(Z), n=0,1, \cdots, N$.

