Uitwerkingen Deeltentamen 1 Inleiding Financiele Wiskunde, 2011-12

* Punten per opgave:

opgave:	1	2	3
punten:	50	30	20

1. Consider a 2-period binomial model with $S_{0}=100, u=1.2, d=0.9$, and $r=0.1$. Suppose the real probability measure P satisfies $P(H)=p=\frac{1}{2}=P(T)$.
(a) Consider an option with payoff $V_{2}=\max \left(S_{1}, S_{2}\right)-100$. Determine the price V_{n} at time $n=0,1$.
(b) Suppose $\omega_{1} \omega_{2}=H T$, find the values of the portfolio process $\Delta_{0}, \Delta_{1}(H)$ so that so that the corresponding wealth process satisfies $X_{0}=V_{0}$ (your answer in part (a)) and $X_{2}(H T)=V_{2}(H T)$.
(c) Suppose a trader is selling the above option for a price $T>V_{0}$. Explain how the trader can perform arbitrage, i.e. with begin wealth equals to zero he can build a portfolio that has at time 2 a non-negative value with probability 1.
(d) Consider the utility function $U(x)=\sqrt{x}(x>0)$. Show that the random variable $X=X_{2}$ (which is a function of the two coin tosses) that maximizes $E(U(X))$ subject to the condition that $\widetilde{E}\left(\frac{X}{(1+r)^{2}}\right)=X_{0}$ is given by

$$
X=X_{2}=\frac{(1.1)^{2} X_{0}}{Z^{2} E\left(Z^{-1}\right)}
$$

where Z is the Radon Nikodym derivative of \widetilde{P} with respect to P.
(e) Assume in part (e) that $X_{0}=100$. Determine the value of the optimal portfolio process $\left\{\Delta_{0}, \Delta_{1}\right\}$ and the value of the corresponding wealth process $\left\{X_{0}, X_{1}, X_{2}\right\}$.

Solution (a): We first calculate the risk-neutral probability measure \widetilde{P}, we have $\widetilde{P}(H)=\widetilde{p}=2 / 3$ and $\widetilde{P}(T)=\widetilde{q}=1 / 3$. We start with the value of V_{2}, we have $V_{2}(H H)=44, V_{2}(H T)=20, V_{2}(T H)=8, V_{2}(T T)=0$. Then

$$
V_{1}(H)=\frac{1}{1.1}\left[\frac{2}{3}(44)+\frac{1}{3}(20)\right]=32.73,
$$

and

$$
V_{1}(T)=\frac{1}{1.1}\left[\frac{2}{3}(8)+\frac{1}{3}(0)\right]=4.85
$$

leading to

$$
V_{0}=\frac{1}{1.1}\left[\frac{2}{3}(32.72)+\frac{1}{3}(4.85)\right]=21.31
$$

Solution (b): If $\omega_{1} \omega_{2}=T H$, then

$$
\Delta_{0}=\frac{V_{1}(H)-V_{1}(T)}{S_{1}(H)-S_{1}(T)}=\frac{32.73-4.85}{120-90}=0.93
$$

and

$$
\Delta_{1}(T)=\frac{V_{1}(T H)-V_{1}(T T)}{S_{1}(T H)-S_{1}(T T)}=\frac{8-0}{108-81}=0.296
$$

Leading to

$$
\left.X_{1}(T)=\Delta_{0} S 1_{(} T\right)+1.1\left(V_{0}-\Delta_{0} S_{0}\right)=4.85,
$$

and

$$
X_{2}(T H)=\Delta_{1}(T) S_{2}(T H)+1.1\left(X_{1}(T)-\Delta_{1}(T) S_{1}(T)\right)=8
$$

Solution (c):

-At time 0 , sell the option for T euros and use V_{0} to start a self financing portfolio which at time 2 has value equals the payoff of the option. Put the rest $V_{0}-T$ in the bank.
-At time 2, your self-financing portfolio has value V_{2} which you use to pay the payoff of the buyer of the option, and in the bank you have $\left(T-V_{0}\right)(1.1)^{2}>0$.

Solution (d): Notice that the function $U(x)=\sqrt{x}, x>0$ is strict concave with $U^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. We apply Theorem 3.3.6, we find that the inverse I of U^{\prime} is given by $I(x)=\frac{1}{4 x^{2}}$. Thus, the optimal solution is given by

$$
X_{2}=X=I\left(\frac{\lambda Z}{(1.1)^{2}}\right)=\frac{(1.1)^{4}}{4 \lambda^{2} Z^{2}}
$$

and satisfies the constraint

$$
X_{0}=E\left(\frac{X Z}{(1.1)^{2}}\right)=\frac{(1.1)^{2}}{4 \lambda^{2}} E\left(Z^{-1}\right)
$$

Hence, $4 \lambda^{2}=\frac{(1.1)^{2} E\left(Z^{-1}\right)}{X_{0}}$, and

$$
X=\frac{X_{0}(1.1)^{2}}{Z^{2} E\left(Z^{-1}\right)}
$$

Solution (e): To find the optimal portfolio and corresponding wealth processes, we first determine explicitly the the random variable $X=X_{2}$, and then we apply

Theorem 1.2.2 with $X_{0}=100$. We begin by find the Radon Nikodym derivative Z. We have

$$
Z(H H)=\frac{16}{9}, Z(H T)=Z(T H)=\frac{8}{9}, Z(T T)=\frac{4}{9} .
$$

Next, we find

$$
E\left(Z^{-1}\right)=\frac{9}{16} \times \frac{1}{4}+\frac{9}{8} \times \frac{1}{4}+\frac{9}{8} \times \frac{1}{4}+\frac{9}{4} \times \frac{1}{4}=1.27 .
$$

Thus,

$$
X=X_{2}=\frac{X_{0}(1.1)^{2}}{Z^{2} E\left(Z^{-1}\right)}=\frac{95.6}{Z^{2}}
$$

This leads to

$$
X_{2}(H H)=30.25, X_{2}(H T)=X_{2}(T H)=120.99, X_{2}(T T)=483.98
$$

Hence,

$$
\begin{gathered}
X_{1}(H)=\frac{1}{1.1}\left[\frac{2}{3}(30.25)+\frac{1}{3}(120.99)\right]=55 \\
X_{1}(T)=\frac{1}{1.1}\left[\frac{2}{3}(120.99)+\frac{1}{3}(483.98)\right]=220 .
\end{gathered}
$$

Notice that

$$
X_{0}=\frac{1}{1.1}\left[\frac{2}{3}(55)+\frac{1}{3}(220)\right]=100
$$

as required. The optimal portfolio is given by

$$
\begin{gathered}
\Delta_{0}=\frac{X_{1}(H)-X_{1}(T)}{S_{1}(H)-S_{1}(T)}=\frac{55-220}{120-90}=-5.5, \\
\left.\Delta_{(} H\right)=\frac{X_{2}(H H)-X_{2}(H T)}{S_{2}(H H)-S_{2}(H T)}=\frac{30.25-120.99}{144-108}=-2.52, \\
\Delta_{1}(T)=\frac{X_{2}(T H)-X_{2}(T T)}{S_{2}(T H)-S_{2} T(T)}=\frac{120.99-483.98}{108-81}=-13.44 .
\end{gathered}
$$

2. Consider the N-period Binomial model with risk neutral probability measure \widetilde{P}. Suppose $X_{0}, X_{1}, \cdots, X_{N}$ is an adapted process satisfying $X_{i}>-1$ for all $i=$ $0,1, \cdots, N$. Define a process $Y_{0}, Y_{1}, \cdots, Y_{N}$ by

$$
Y_{0}=1, \quad \text { and } Y_{n}=\frac{1}{\left(1+X_{0}\right) \cdots\left(1+X_{n-1}\right)}, n=1, \cdots, N
$$

(a) Let $U_{n}=\widetilde{E}_{n}\left[\frac{Y_{N}}{Y_{n}}\right], n=0,1, \cdots, N$. Show that the process $Y_{0} U_{0}, Y_{1} U_{1}, \cdots, Y_{N} U_{N}$ is a martingale with respect to \widetilde{P}.
(b) Let $\Delta_{0}, \cdots, \Delta_{N-1}$ be an adapted process, and W_{0} a fixed positive real number.

Define for $n=0,1, \cdots, N-1$,

$$
W_{n+1}=\Delta_{n} U_{n+1}+\left(1+X_{n}\right)\left(W_{n}-\Delta_{n} U_{n}\right)
$$

Show that the process

$$
Y_{0} W_{0}, Y_{1} W_{1}, \cdots, Y_{N} W_{N}
$$

is a martingale with respect to \widetilde{P}.
(c) Let U_{n} be as given in part (a). Set $I_{0}=0$ and define $I_{n}=\sum_{j=0}^{n-1} Y_{j+1}\left(U_{j+1}-U_{j}\right)$, $n=1, \cdots, N$. Show that $I_{0}, I_{1}, \cdots, I_{N}$ is a martingale with respect to \widetilde{P}.

Solution (a): First note that the process $\left\{X_{n}: n=0, \cdots, N\right\}$ is adapted, hence the random variable Y_{n} is known at time $n-1$, i.e. depends on the first $n-1$ tosses, $n=1, \cdots, N$. Hence,

$$
U_{n}=\widetilde{E}_{n}\left[\frac{Y_{N}}{Y_{n}}\right]=\frac{1}{Y_{n}} \widetilde{E}_{n}\left[Y_{N}\right],
$$

which implies $Y_{n} U_{n}=\widetilde{E}_{n}\left[Y_{N}\right]$. Using the iteration property of conditional expectations, or directly Theorem 3.2 .1 , one has that the process $Y_{0} U_{0}, Y_{1} U_{1}, \cdots, Y_{N} U_{N}$ is a martingale with respect to \widetilde{P}.

Solution (b): It is clear that the process W_{0}, \cdots, W_{N} is adapted. Since Y_{n} depends on the first $n-1$ tosses, we see that the process $Y_{0} W_{0}, Y_{1} W_{1}, \cdots, Y_{N} W_{N}$ is also adapted. Furthermore, $1+X_{n}=\frac{Y_{n}}{Y_{n+1}}$. Thus,

$$
\begin{aligned}
\widetilde{E}_{n}\left(W_{n+1}\right) & =\Delta_{n} \widetilde{E}_{n}\left(U_{n+1}\right)+\left(1+X_{n}\right)\left(W_{n}-\Delta_{n} U_{n}\right) \\
& =\Delta_{n} \widetilde{E}_{n}\left(\widetilde{E}_{n+1}\left(\frac{Y_{N}}{Y_{n+1}}\right)\right)+\frac{Y_{n}}{Y_{n+1}}\left(W_{n}-\Delta_{n} U_{n}\right) \\
& =\Delta_{n} \widetilde{E}_{n}\left(\frac{Y_{N}}{Y_{n+1}}\right)+\frac{Y_{n}}{Y_{n+1}} W_{n}-\Delta_{n} \frac{Y_{n}}{Y_{n+1}} \widetilde{E}_{n}\left(\frac{Y_{N}}{Y_{n}}\right) \\
& =\Delta_{n} \widetilde{E}_{n}\left(\frac{Y_{N}}{Y_{n+1}}\right)+\frac{Y_{n}}{Y_{n+1}} W_{n}-\Delta_{n} \widetilde{E}_{n}\left(\frac{Y_{N}}{Y_{n+1}}\right) \\
& =\frac{Y_{n}}{Y_{n+1}} W_{n} .
\end{aligned}
$$

Thus, $Y_{n} W_{n}=Y_{n+1} \widetilde{E}_{n}\left(W_{n+1}\right)=\widetilde{E}_{n}\left(Y_{n+1} W_{n+1}\right)$, and

$$
Y_{0} W_{0}, Y_{1} W_{1}, \cdots, Y_{N} W_{N}
$$

is a martingale with respect to \widetilde{P}.
Solution (c): First note that Y_{n+1} is known at time n, and

$$
I_{n+1}=I_{n}+Y_{n+1}\left(U_{n+1}-U_{n}\right) .
$$

From part (a), we have that U_{0}, \cdots, U_{N} is a martingale with respect to \widetilde{P}, and hence $\widetilde{E}_{n}\left(U_{n+1}-U_{n}\right)=0$. Thus,

$$
\widetilde{E}_{n}\left(I_{n+1}\right)=I_{n}+Y_{n+1} \widetilde{E}_{n}\left(U_{n+1}-U_{n}\right)=I_{n} .
$$

Therefore, $I_{0}, I_{1}, \cdots, I_{N}$ is a martingale with respect to \widetilde{P}.
3. Consider the N-period binomial model, with expiration process N, up factor u, down factor d and interst rate r. Let \widetilde{P} be the risk neutral probability and P the real probability. We denote by $p=P(H)$ and $\widetilde{p}=\widetilde{P}(H)$. Let $S_{0}, S_{1}, \cdots, S_{N}$ be the corresponding price process.
(a) Define $Y_{n}=\sum_{k=0}^{n} S_{k}$. Show that the process

$$
\left(Y_{0}, S_{0}\right),\left(Y_{1}, S_{1}\right), \ldots,\left(Y_{N}, S_{N}\right)
$$

is Markov with respect to P and \widetilde{P}.
(b) Let $V_{N}=\left(S_{N}-\frac{Y_{N}}{N+1}\right)^{+}$. Show that for each $n=0,1, \cdots, N$, there exists a function f_{n} such that

$$
E_{n}\left(Z V_{N}\right)=Z_{n}(1+r)^{N-n} f_{n}\left(Y_{n}, S_{n}\right)
$$

where Z is the Radon-Nikodym derivative of \tilde{P} with respect to P, and $Z_{n}=$ $E_{n}(Z), n=0,1, \cdots, N$.

Solution (a): Define $Z_{n+1}=\frac{S_{n+1}}{S_{n}}$ for $n=0,1, \cdots, N-1$. Note that Z_{n+1} is independent of the first n tosses, and

$$
Y_{n+1}=Y_{n}+Z_{n+1} S_{n}, \text { and } S_{n+1}=Z_{n+1} S_{n}
$$

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be any function, by the Independence Lemma, we have

$$
E_{n}\left(f\left(Y_{n+1}, S_{n+1}\right)\right)=E_{n}\left(f\left(Y_{n}+Z_{n+1} S_{n}, Z_{n+1} S_{n}\right)\right)=g\left(Y_{n}, S_{n}\right),
$$

where

$$
g(y, s)=E\left(f\left(y+Z_{n+1} s, Z_{n+1} s\right)\right)=p f(y+u s, u s)+q f(y+d s, d s)
$$

A similar calculation shows that

$$
\widetilde{E}_{n}\left(f\left(Y_{n+1}, S_{n+1}\right)\right)=\widetilde{E}_{n}\left(f\left(Y_{n}+Z_{n+1} S_{n}, Z_{n+1} S_{n}\right)\right)=h\left(Y_{n}, S_{n}\right),
$$

where

$$
h(y, s)=\widetilde{E}\left(f\left(y+Z_{n+1} s, Z_{n+1} s\right)\right)=\widetilde{p} f(y+u s, u s)+\widetilde{q} f(y+d s, d s) .
$$

Hence, the process

$$
\left(Y_{0}, S_{0}\right),\left(Y_{1}, S_{1}\right), \ldots,\left(Y_{N}, S_{N}\right)
$$

is Markov with respect to P and \widetilde{P}.
Solution (b): Let $f(y, s)=\left(s-y(n+1)^{-1}\right)^{+}$, then $V_{N}=f\left(Y_{N}, S_{N}\right)$. Since $\left(Y_{0}, S_{0}\right),\left(Y_{1}, S_{1}\right), \ldots,\left(Y_{N}, S_{N}\right)$ is Markov with respect to \widetilde{P}, by Theorem 2.5.8, for each $n=0,1, \cdots, N$, there exists a function f_{n} such that

$$
V_{n}=\widetilde{E}\left(V_{N}(1+r)^{-(N-n)}\right)=f_{n}\left(Y_{n}, S_{n}\right),
$$

(note that $f=f_{N}$). Thus, by Lemma 3.2.6

$$
E_{n}\left(Z V_{N}\right)=Z_{n} \widetilde{E}_{n}\left(V_{N}\right)=Z_{n}(1+r)^{N-n} f_{n}\left(Y_{n}, S_{n}\right)
$$

