JUSTIFY YOUR ANSWERS

Allowed material: calculator, material handed out in class and handwritten notes (your handwriting). NO BOOK IS ALLOWED

NOTE: The test consists of four problems plus a bonus problem for a total of 12 points. The score is computed by adding all the credits up to a maximum of 10

Exercise 1. [Coupon bond] Consider a coupon bond with face value F and maturity equal to N years, paying a coupon C at the end of each year. The effective yearly interest rate is r.
(a) (0.5 pts.) Show that the price of such bond is

$$
V_{0}=\frac{C}{r}\left[1-\left(\frac{1}{1+r}\right)^{N}\right]+\frac{F}{(1+r)^{N}} .
$$

(b) (0.5 pts.) An investor purchases the bond but decides to sell it immediately after having received the k-th coupon. Find the selling price.

Exercise 2. [Replication with selling fee and interest spread] Two scenarios are foreseen for a certain stock after one period: one in which the stock value is 110 E and another in which the value is 90 E . Its current value is $S_{0}=100 \mathrm{E}$. Furthermore:

- Each operation of selling the stock to the market carries a fee of 2% (there is no fee to buy from the market).
- Borrowing money costs 12% and deposits pay only 8%.

A call option is established at a strike price also equal to 100E. Determine:
(a) (0.8 pts.$)$ The risk-neutral probability.
(b) (0.8 pts.) The fair price of the option.
(c) (0.8 pts.) The hedging strategy.

Exercise 3. [Filtrations and (non-)stopping times] Two numbers are randomly generated by a computer. The only possible outcomes are the numbers 1,2 or 3 . The corresponding sample space is $\Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{i} \in\{1,2,3\}\right\}$. Consider the filtration $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}$, where \mathcal{F}_{0} is formed only by the empty set and $\Omega_{2}, \mathcal{F}_{1}$ formed by all events depending only on the first number, and \mathcal{F}_{2} all events in Ω_{2} (this is the ternary version of the two-period binary scenario discussed in class).
(a) (0.8 pts.) List all the events forming \mathcal{F}_{1}.
(b) (0.8 pts.) Let $\tau: \Omega_{2} \longrightarrow \mathbb{N} \cup\{\infty\}$ defined as the "last outcome equal to 3 ". That is, $\tau\left(3, \omega_{2}\right)=1$ if $\omega_{2} \neq 3, \tau\left(\omega_{1}, 3\right)=2$ for all ω_{1}, and $\tau=\infty$ if no 3 shows up. Prove that τ is not a stopping time with respect to the filtration $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}$.

Exercise 4. [Put options] Consider a stock with initial price S_{0} following a binomial model with $u=2$ and $d=1 / 2$. That is, at the end of each period, the price can either double or be halved. Bank interest is 25% for each period. A producer will have the stock available at the end of two periods and wishes to sell it for at least S_{0} at that time.
(a) (2pts.) The producer is offered three possibilities:
(O1) A forward selling contract
(O2) An European put option
(O3) An American put option with intrinsic value $G(S)=S_{0}-S$.
Compute the fair initial price of each of the possibilities.
(b) The investor purchases the American option.
-i- (1 pt.) Establish the optimal exercise time τ^{*} for the investor.
-ii- (1 pt.) Verify the validity of the formula

$$
\text { Value of the American option }=\widetilde{\mathbb{E}}\left[\mathbb{I}_{\left\{\tau^{*} \leq N\right\}} \frac{G_{\tau^{*}}}{(1+r)^{\tau^{*}}}\right]
$$

-iii- (1 pt.) Show that the discounted values \bar{V}_{n} do not form a martingale, but the stopped discounted values $\overline{V_{n}^{\tau^{*}}}$ do.

Bonus problem

Bonus. [Dividend-paying stock] (2 pts .) Consider the general binary (not necessarily binomial) dividend-paying stock model. The model is defined by stock prices S_{n} and growth factors $R_{n}, n=0, \ldots, N$. At the end of each period, after the new stock value is attained, a dividend is paid and the stock price is reduced by the corresponding amount Formally, these operations are described by the following adapted non-negative random variables
(a) $Y_{n}\left(\omega_{1}, \ldots, \omega_{n}\right)$ representing the percentual change in stock value from time t_{n-1}^{+}to t_{n}^{-}, that is, before paying dividend at t_{n}. Hence, the stock value at t_{n}^{-}is

$$
S_{n}^{-}=Y_{n} S_{n-1}
$$

(b) $A_{n}\left(\omega_{1}, \ldots, \omega_{n}\right)$ representing the percent of the t_{n}^{-}-value of the stock paid as a dividend at t_{n}^{+}. Thus,

$$
S_{n}=\left(1-A_{n}\right) Y_{n} S_{n-1}
$$

If the financial institution adopts hedging strategies Δ_{n}, the wealth equation for the values X_{n} of its portfolio becomes

$$
X_{n+1}=\Delta_{n} Y_{n+1} S_{n}+R_{n}\left(X_{n}-\Delta_{n} S_{n}\right)
$$

Consider the risk-neutral measure defined by (omitting, as done in class, the overall dependence on $\left.\omega_{1}, \ldots, \omega_{n}\right)$

$$
\widetilde{p}_{n}=\frac{R_{n} S_{n}-S_{n+1}^{-}(T)}{S_{n+1}^{-}(H)-S_{n+1}^{-}(T)}=\frac{R_{n}-Y_{n+1}(T)}{Y_{n+1}(H)-Y_{n+1}(T)}
$$

Show the following:
(a) $(0.5 \mathrm{pts}) \widetilde{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=R_{n}$.
(b) (0.5 pts) The discounted wealth process \bar{X}_{n} is a \widetilde{P}-martingale, whichever the hedging strategy.
(c) (0.5 pts) The discounted stock price \bar{S}_{n} is not a \widetilde{P}-martingale, but only a \widetilde{P}-super-martingale.
(d) (0.5 pts) In contrast, the process

$$
\widehat{S}_{n}=\frac{\bar{S}_{n}}{\left(1-A_{1}\right) \cdots\left(1-A_{n}\right)}
$$

is a martingale.

