
Utrecht University
Mathematics
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Fall 2011

Test, November 6, 2012

JUSTIFY YOUR ANSWERS
Allowed: material handed out in class and handwritten notes (your handwriting)

NOTE:

• The test consists of five questions plus one bonus problem.

• The score is computed by adding all the credits up to a maximum of 10

Exercise 1. Let Xi, 1 = 1, . . . , n be independent normal random variables with respective means µi and
variances σ2i . Consider its mean

X =
1

n

n∑
i=1

Xi

(a) (0.5 pts.) Prove that X is also normally distributed.

(b) (0.5 pts.) Determine the mean and variance of X.

Answers: The moment-generating function ΦX(t) of X factorizes, due to the independence of the Xi,
in the following way:

ΦX(t) = E
(
etX
)

=

n∏
i=1

E
(
etXi/n

)
=

n∏
i=1

ΦXi(t/n)

where ΦXi is the moment-generator function of the variable Xi. As each Xi is normal,

ΦXi(s) = exp
[
µis+

σ2i s
2

2

]
,

hence

ΦX(t) = exp
[
t
( 1

n

n∑
i=1

µi

)
+
t2

2

( 1

n2

n∑
i=1

σ2i

)]
.

This is the moment-generating function of a normal variable with mean 1
n

∑n
i=1 µi and variance 1

n2

∑n
i=1 σ

2
i .

This identifies X as a variable with such a law.

Exercise 2. (1 pt.) Consider a branching process with offspring number with mean µ and variance σ.
That means, a sequence of random variables (Xn)n≥0 with X0 = 1 and

Xn =

Xn−1∑
i=1

Zi n ≥ 1

where Zn are iid random variables (offspring distribution) independent of the (Xn) with mean µ Show
that E(Xn) = µn. [Hint: Start by showing that E(Xn) = µE(Xn−1).]
Answer: Start with

E(Xn) = E
(
E(Xn | Xn−1)

)
.
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Now

E(Xn | Xn−1 = xn−1) = E
(xn−1∑

n≥1
Zi

∣∣∣ Xn−1 = xn−1

)
=

xn−1∑
n≥1

E(Zi | Xn−1 = xn−1)

=

xn−1∑
n≥1

E(Zi) (independence of Zi and Xn−1)

= xn−1 µ .

Hence E(Xn | Xn−1) = µXn−1 and

E(Xn) = E
(
µXn−1

)
= µE(Xn−1) .

By induction in n we get the proposed result.

Exercise 3.

(a) (0.8 pts.) Show that (
p 1− p

1− p p

)n

=

(
1/2 + an/2 1/2− an/2
1/2− an/2 1/2 + an/2

)
for n ≥ 1. Determine a.

Answer: This is an easy proof by induction. Comparing for the case n = 1 we obtain a = 2p− 1.

(b) A communication system transmits the digits 0 and 1. Each digit must pass through n stages, each
of which independently transmits the digit correctly with probability p.

-i- (0.8 pts.) Find the probability that the final digit, Xn, is correct.
Answer: Pn

00 = Pn
11 = 1/2− (2p− 1)n/2.

-ii- (0.8 pts.) Find the probability that all the first n stages transmit correctly.
Answer: By independence the probability is equal to pn.

Exercise 4. Consider a three-state Markov process (Xn)n≥0 with two absorbing states. That is, a
process with a three-symbol alphabet (=state space), say {0, 1, 2}, and transition matrix

P =

 1 0 0
a b c
0 0 1


with a, b, c > 0 and a+ b+ c = 1.

(a) (0.8 pts.) Show that Pn
1 1 = bn.

Answer: As Px 1 = 0 for every x 6= 1,

Pn
11 =

2∑
x=0

Pn−1
1x Px 1 = Pn−1

11 P11 = Pn−1
11 b .

The result follows by induction.
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(b) (0.8 pts.) Show that the state “1” is transient.

Answer: ∑
n≥0

Pn
11 =

∑
n≥0

bn =
1

1− b
< ∞ .

(c) (0.8 pts.) Let T = inf{n > 0 : Xn = 0 or Xn = 2} be the time it takes the process to be absorbed
in one of the absorbing states. Compute E(T | X0 = 1). [Hint: you may want to use that for a
discrete random variable Z, E[Z] =

∑
k≥0 P (Z > k).]

Answer:

E(T | X0 = 1) =∑
k≥0

P (T > k | X0 = 1) =
∑
k≥0

P
(
Xn = 1, n = 1, . . . , k

∣∣ X0 = 1
)

=
∑
k≥0

bk =
1

1− b
.

(d) (0.8 pts.) Let T0 = inf{n > 0 : Xn = 0} and T2 = inf{n > 0 : Xn = 2} be the absorption times at
each of the absorbing states. Compute P (T0 < T2 | X0 = 1).

Answer:

P (T0 < T2 | X0 = 1)

=
∑
k≥0

P
(
Xk+1 = 0, Xn = 1, n = 1, . . . , k

∣∣ X0 = k
)

=
∑
k≥0

P
(
Xk+1 = 0

∣∣ Xk = 1
)
P k
11

=
∑
k≥0

a bk =
a

1− b
.

(e) (0.8 pts.) Compute all the invariant measures of the process.

Answer: Let π = (π0, π1, π2) be the invariant measure. The conditions
∑

x Πx Px y = Πx plus the
normalisation condition Π0 + Π1 + Π2 = 1 become:

Π0 + aΠ1 = Π0

bΠ1 = Π1

cΠ1 + Π2 = Π2

Π0 + Π1 + Π2 = 1 .

All their solutions are of the form Π1 = 0, Π1 + Π2 = 1. That is, the invariant measures Π take the form

Π = (λ, 0, 1− λ) = λ (1, 0, 0) + (1− λ)(0, 0, 1) for 0 ≤ λ ≤ 1 ,

That is, the invariant measures are convex combinations of the measure concentrated in the state “0” and
the measure concentrated in the state “2”.

Exercise 5. At a certain beach resort a bad day is equally likely to be followed by a good or a bad day,
while a good day is five times more likely to be followed by a good day than by a bad day. The number
of interventions by lifesavers is Poisson distributed with mean 4 in good days and mean 1 in bad days.
Find, in the long run,

(a) (0.8 pts.) The probability of the lifesavers not having any intervention in a given day.

(b) (0.8 pts.) The average number of interventions per day.
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[Take e−4 ∼ 0.02 and e−1 ∼ 0.4.]
Answers: Associating “good days” → 1 and “bad days” → 2, the weather pattern is a Markov process
with transition matrix (

5/6 1/6
1/2 1/2

)
.

The proportion of good and bad days is determined, in the long run, by the invariant measure Π of this
chain. This measure satisfies:

5
6Π1 + 1

2Π2 = Π1

Π1 + Π2 = 1

}
=⇒ Π =

(3

4
,
1

4

)
.

(a) Let S be the number of interventions per day.

P (S = 0) = P (S = 0 | good day)P (good day) + P (S = 0 | bad day) P (bad day)

= e−4
3

4
+ e−1

1

4
∼ 0.11

(b)

E(S) = E(S | good day)P (good day) + E(S | bad day)P (bad day)

= 4 · 3

4
+ 1 · 1

4
=

13

4
= 3.25 .

Bonus problem

Bonus Consider a homogeneous (or shift-invariant) Markov chain (Xn)n∈N (Xn)n∈N with finite state
space S. Let us recall that the hitting time of a state y is

Ty = min
{
n ≥ 1 : Xn = y

}
.

(a) If ` ≤ n ∈ N, x, y ∈ S, prove the following

-i- (0.5 pts.)
P
(
Xn = y, Ty = `

∣∣ X0 = x
)

= Pn−`
yy P

(
Ty = `

∣∣ X0 = x
)
.

Answer: Decomposing in terms of trajectories,

P
(
Xn = y, Ty = `

∣∣ X0 = x
)

=
∑

x1,...,x`−1 6=y

P
(
Xn = y,X` = y,X`−1 = x`−1, · · · , X1 = x1

∣∣ X0 = x
)

=
∑

x1,...,x`−1 6=y

Pn−`
yy P

(
X` = y,X`−1 = x`−1, · · · , X1 = x1

∣∣ X0 = x
)

=
∑

x1,...,x`−1 6=y

Pn−`
yy P

(
Ty = `

∣∣ X0 = x
)

-ii- (0.5 pts.)

Pn
xy =

n∑
`=1

Pn−`
yy P

(
Ty = `

∣∣ X0 = x
)
.
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Answer: As {
Xn = y

}
=

n⋃
`=1

{
Xn = y, Ty = `

}
,

the union being disjoint, we conclude that

n∑
`=1

P
(
Xn = y, Ty = `

∣∣ X0 = x
)

= P
(
Xn = y

∣∣ X0 = x
)

= Pn
xy .

The result follows, hence, by summing both sides of -i- with respect to `.

(b) Conclude the following:

-i- (0.5 pts.) If every state is transient, then for every x, y ∈ S.∑
n≥0

Pn
xy < ∞ .

Answer: By -ii- above,

∑
n≥0

Pn
xy =

∑
n≥0

n∑
`=1

Pn−`
yy P

(
Ty = `

∣∣ X0 = x
)
.

Hence, interchanging the order of summation,∑
n

Pn
xy =

∑
`≥1

∑
n≥`

Pn−`
yy P

(
Ty = `

∣∣ X0 = x
)

=
∑
`≥1

P
(
Ty = `

∣∣ X0 = x
)∑
m≥0

Pm
yy

= P
(
Ty <∞

∣∣ X0 = x
)∑
m≥0

Pm
yy .

If y is transient, the last sum is finite.

-ii- (0.5 pts.) The previous result leads to a contradiction with the stochasticity property of the
matrix P. Hence not all states can be transient.
Answer: Summing over y the inequality in (b)-i- we get∑

y

∑
n≥0

Pn
xy < ∞ (1)

(recall that S is finite). However, by stochasticity
∑

y P
n
xy = 1 for every n ≥ 0. Hence,∑

y

∑
n≥0

Pn
xy =

∑
n≥0

∑
y

Pn
xy =

∑
n≥0

1 = ∞ ,

in contradiction with (1).
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