Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The characteristic polynomial is $\operatorname{det}(A-\lambda \mathbb{I})=\lambda^{2}+4$. The eigenvalues are the roots of the characteristic polynomial, hence $\lambda_{1 / 2}= \pm 2 i$.
A non-zero vector $v=\binom{v_{1}}{v_{2}} \in \mathbb{C}^{2}$ is an eigenvector associated with $\lambda_{1}=2 i$, if it satisfies $A v=\lambda_{1} v$, or equivalently solves the following system of linear equations:

$$
\begin{array}{r}
(1-2 i) v_{1}+v_{2}=0 \\
-5 v_{1}-(1+2 i) v_{2}=0 .
\end{array}
$$

Hence,

$$
v=c_{1}\binom{-1}{1-2 i}
$$

with $c_{1} \in \mathbb{C} \backslash\{0\}$. Similarly, one finds that $c_{2}\binom{-1}{1+2 i}$ with $c_{2} \in \mathbb{C} \backslash\{0\}$ are the eigenvectors corresponding to $\lambda_{2}=-2 i$.
b) The matrix A is diagonalizable, since the matrix

$$
S=\left(\begin{array}{cc}
-1 & -1 \\
1-2 i & 1+2 i
\end{array}\right)
$$

whose columns consist of eigenvectors associated with λ_{1} and λ_{2}, respectively, is invertible. Indeed, $\operatorname{det} S=-4 i \neq 0$. One can show that then $A=S D S^{-1}$ with $D=\left(\begin{array}{cc}2 i & 0 \\ 0 & -2 i\end{array}\right)$.
c) The general solution to $\frac{d}{d t} F=A F$ is given by

$$
F(t)=c_{1} e^{2 i t}\binom{-1}{1-2 i}+c_{2} e^{-2 i t}\binom{-1}{1+2 i}
$$

for $t \in \mathbb{R}$ with $c_{1}, c_{2} \in \mathbb{C}$. In order to find the solution that satisfies $F(0)=\binom{0}{2}$ we choose the constants c_{1} and c_{2} such that

$$
F(0)=\binom{-c_{1}-c_{2}}{c_{1}(1-2 i)+c_{2}(1+2 i)}=\binom{0}{2} .
$$

Hence, $c_{2}=-c_{1}$ and $c_{1}=-\frac{1}{2 i}$.

Problem 2.

a) Assuming that the convergence radius of the power series function is ∞, we obtain for $x \in \mathbb{R}$ that

$$
f^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n},
$$

and

$$
x^{2} f(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2}=\sum_{n=2}^{\infty} a_{n-2} x^{n} .
$$

Plugging this into (1) then yields

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}-\sum_{n=2}^{\infty} 4 a_{n-2} x^{n}=0 .
$$

By the identity principle, we conclude that

$$
2 a_{2}+2 a_{0}=0, \quad 6 a_{3}+2 a_{1}=0,
$$

and

$$
(n+2)(n+1) a_{n+2}+2 a_{n}-4 a_{n-2}=0 \quad \text { for } n \geq 2
$$

The latter can be rephrased as

$$
a_{n+2}=\frac{4 a_{n-2}-2 a_{n}}{(n+2)(n+1)} \quad \text { for } n \geq 2 \text {, }
$$

or by an index shift as

$$
a_{n}=\frac{4 a_{n-4}-2 a_{n-2}}{n(n-1)} \quad \text { for } n \geq 4
$$

This is the desired recurrence relation.
b) If $a_{0}=1$ and $a_{1}=0$, we see that $a_{2}=-1$ and $a_{3}=0$. Since a_{n} is given as a linear combination of a_{n-4} and a_{n-2} for every integer $n \geq 4$, iterating this procedure gives that every a_{n} with n an odd positive integer is a linear combination of a_{1} and a_{3}. Since $a_{1}=a_{3}=0$, it follows that $a_{n}=0$ for all odd positive integers n.
c) Let us remark that in view of b), $\sum_{n \geq 0} a_{n} x^{n}$ converges if and only if $\sum_{k \geq 0} a_{2 k} x^{2 k}$ converges. Here we choose the ratio test. Alternatively, one can also argue with the comparison test.
Since for every $x \in \mathbb{R}$,

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{2(k+1)} x^{2(k+1)}}{a_{2 k} x^{2 k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{x^{2 k+2} k!}{(k+1)!x^{2 k}}\right|=\lim _{k \rightarrow \infty} \frac{x^{2}}{k+1}=0<1,
$$

the ratio test gives the convergence of the power series $\sum_{k \geq 0} a_{2 k} x^{2 k}$ for all $x \in \mathbb{R}$.
d) In view of b) and c),

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{k=0}^{\infty} a_{2 k} x^{2 k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{2 k}=\sum_{k=0}^{\infty} \frac{\left(-x^{2}\right)^{k}}{k!} .
$$

The right-hand side is the Taylor series expansion of $x \mapsto e^{-x^{2}}$, hence $f(x)=e^{-x^{2}}$ for $x \in \mathbb{R}$ as claimed. Since

$$
\frac{d}{d x} e^{-x^{2}}=-2 x e^{-x^{2}} \quad \text { and } \quad \frac{d^{2}}{d x^{2}} e^{-x^{2}}=\left(4 x^{2}-2\right) e^{-x^{2}}
$$

it is immediate to see that $f(x)=e^{-x^{2}}$ is a solution to (1).

Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously differentiable with jumps in all odd integers, i.e. in $x=2 k+1$ with $k \in \mathbb{Z}$.
b) For $k=0$ we have that

$$
\hat{f}_{0}=\frac{1}{2} \int_{-1}^{1} f(x) d x=\frac{1}{2} \int_{0}^{1} x d x=\frac{1}{4}
$$

In the case $k \neq 0$, we use integration by parts to obtain

$$
\begin{aligned}
\hat{f}_{k} & =\frac{1}{2} \int_{0}^{1} x e^{-i k \pi x} d x=\frac{1}{2 i k \pi} \int_{0}^{1} e^{-i k \pi x} d x-\frac{1}{2 i k \pi} e^{-i k \pi} \\
& =\frac{1}{2 k^{2} \pi^{2}}\left(e^{-i k \pi}-e^{0}\right)-\frac{1}{2 i \pi k} e^{-i k \pi}= \begin{cases}-\frac{1}{2 i k \pi} & \text { if } k \text { even } \\
\frac{1}{2 i k \pi}-\frac{1}{k^{2} \pi^{2}} & \text { if } k \text { odd. }\end{cases}
\end{aligned}
$$

c) Since f is piecewise continuously differentiable, the Fourier inversion formula tells us that for $x \in \mathbb{R}$,

$$
\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)=\sum_{k=-\infty}^{\infty} \hat{f}_{k} e^{-i k \pi x}
$$

where the series on the right-hand side converges. Due to the fact that f is continuous for all $x \in$ \mathbb{R} that are not odd integers, i.e. $x \neq 2 k+1$ for all $k \in \mathbb{Z}$, one has that $f(x)=\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)$ in this case. On the other hand, we find that

$$
\left.\frac{1}{2}\left(f(2 k+1)^{-}\right)+f(2 k+1)^{+}\right)=\frac{1}{2}(1+0)=\frac{1}{2}=f(2 k+1)
$$

for all $k \in \mathbb{Z}$. Summing up, we have for all $x \in \mathbb{R}$ that

$$
f(x)=\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)=\sum_{k=-\infty}^{\infty} \hat{f}_{k} e^{-i k \pi x} .
$$

Along with the Euler formula we find that

$$
\begin{aligned}
f(x) & =\hat{f}_{0}+\sum_{k=1}^{\infty}\left(\hat{f}_{k}+\hat{f}_{-k}\right) \cos (k \pi x)+i\left(\hat{f}_{k}-\hat{f}_{-k}\right) \sin (k \pi x) \\
& =a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k \pi x)+b_{k} \sin (k \pi x), \quad x \in \mathbb{R},
\end{aligned}
$$

with $a_{0}=\hat{f}_{0}, a_{k}=\hat{f}_{k}+\hat{f}_{-k}$ and $b_{k}=i\left(\hat{f}_{k}-\hat{f}_{-k}\right)$ for $k \in \mathbb{N}$. Using the calculations in b) gives that $a_{0}=\frac{1}{4}$ and for $k \in \mathbb{N}$,

$$
a_{k}= \begin{cases}0 & \text { if } k \text { is even } \\ -\frac{2}{k^{2} \pi^{2}} & \text { if } k \text { is odd }\end{cases}
$$

and

$$
b_{k}= \begin{cases}-\frac{1}{k \pi} & \text { if } k \text { is even } \\ \frac{1}{k \pi} & \text { if } k \text { is odd. }\end{cases}
$$

Finally, we obtain the Fourier sine and cosine series representation

$$
\begin{equation*}
f(x)=\frac{1}{4}-\sum_{k=1, k \text { odd }}^{\infty} \frac{2}{k^{2} \pi^{2}} \cos (k \pi x)+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \pi} \sin (k \pi x), \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

d) We set $x=0$ in (6) to find that

$$
0=f(0)=\frac{1}{4}-\sum_{k=1, k \text { odd }}^{\infty} \frac{2}{k^{2} \pi^{2}},
$$

which can be rewritten as

$$
\sum_{k=1, k \text { odd }}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{8}
$$

Hence, the sought value of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots$ is $\frac{\pi^{2}}{8}$.

Problem 4.

a) Following the separation of variables method, we assume that the solution u to (2) has the form

$$
u(x, t)=X(x) T(t), \quad x \in \mathbb{R}, t \geq 0
$$

with functions $X: \mathbb{R} \rightarrow \mathbb{C}$ and $T:[0, \infty) \rightarrow \mathbb{C}$. Plugging this ansatz into (2) gives that

$$
\frac{X^{\prime}(x)}{X(x)}=-\frac{\dot{T}(t)}{T(t)}, \quad x \in \mathbb{R}, t>0
$$

Since the right-hand side of this equation depends only on x and the left-hand side only on t, there exists a constant $\mu \in \mathbb{C}$ such that

$$
\begin{aligned}
X^{\prime}(x) & =\mu X(x), \quad x \in \mathbb{R}, \\
\dot{T}(t) & =-\mu T(t), \quad t>0 .
\end{aligned}
$$

The general (complex) solution to the differential equation $X^{\prime}=\mu X$ is given by $X(x)=c_{1} e^{\mu x}$ for $x \in \mathbb{R}$ with a constant $c_{1} \in \mathbb{C}$. Similarly, $T(t)=c_{2} e^{-\mu t}$ for $t>0$ with a constant $c_{2} \in \mathbb{C}$ is the general (complex) solution to $\dot{T}=-\mu T$.
This implies that $u(x, t)=c e^{\mu(x-t)}$ for $x \in \mathbb{R}$ and $t \geq 0$ with a constant $c \in \mathbb{C}$. The initial condition $u(x, 0)=e^{2 x}$ requires that $c e^{\mu x}=e^{2 x}$ for all $x \in \mathbb{R}$, which means that $c=1$ and $\mu=2$.
Summing up, one finds that $u(x, t)=e^{2(x-t)}$ for $x \in \mathbb{R}$ and $t \geq 0$ is the desired solution.
b) Since for all $x \in \mathbb{R}$ and $t>0$,

$$
\frac{\partial}{\partial t} u(x, t)=\frac{\partial}{\partial t} g(x-t)=-g^{\prime}(x-t)
$$

and

$$
\frac{\partial}{\partial x} u(x, t)=\frac{\partial}{\partial x} g(x-t)=g^{\prime}(x-t),
$$

it follows that $u(x, t)=g(x-t)$ indeed satisfies (2). Moreover, $u(x, 0)=g(x-0)=g(x)$ for $x \in \mathbb{R}$, so that also the initial condition (3) is fulfilled.
c) No. In fact, the function u defined by $u(x, t)=\sin (x-t)$ for $x \in \mathbb{R}$ and $t \geq 0$ does not have the multiplicative structure assumed in the separation of variables approach. This can be proved by a contradiction argument as follows. Assume that $u(x, t)=\sin (x-t)=X(x) T(t)$ for $x \in \mathbb{R}$ and $t \geq 0$ with functions $X: \mathbb{R} \rightarrow \mathbb{C}$ and $T:[0, \infty) \rightarrow \mathbb{C}$. Then

$$
\begin{aligned}
\sin (x) & =T(0) X(x) \\
\cos (x) & =-\sin \left(x-\frac{\pi}{2}\right)=-T\left(\frac{\pi}{2}\right) X(x)
\end{aligned}
$$

for all $x \in \mathbb{R}$. Since the sine and cosine function do not just vary by a scalar factor, consequently, $T(0)=T\left(\frac{\pi}{2}\right)=0$. This yields $\sin (x)=\cos (x)=0$ for all $x \in \mathbb{R}$, which is a contradiction.

Problem 5.

a) We recall that with \mathcal{F} denoting the Fourier transformation,

$$
\left(\mathcal{F}\left(v^{\prime}\right)\right)(s)=\widehat{v^{\prime}}(s)=i s \hat{v}(s) \quad \text { and } \quad\left(\mathcal{F}\left(v^{\prime \prime}\right)\right)(s)=\widehat{v^{\prime \prime}}(s)=(i s)^{2} \hat{v}(s)=-s^{2} \hat{v}(s)
$$

for $s \in \mathbb{R}$. Hence, applying \mathcal{F} to (5) results in

$$
-s^{2} \hat{v}(s)+4 i s \hat{v}(s)+3 \hat{v}(s)=\hat{f}(s), \quad s \in \mathbb{R}
$$

We solve for \hat{v} to obtain

$$
\hat{v}(s)=\frac{\hat{f}(s)}{-s^{2}+4 i s+3}
$$

for $s \in \mathbb{R}$.
b) We calculate that

$$
(\mathcal{F} g)(s)=\hat{g}(s)=\frac{1}{2} \int_{0}^{\infty}\left(e^{-t}-e^{-3 t}\right) e^{-i s t} d t=\frac{1}{2}\left(\frac{1}{1+i s}-\frac{1}{3+i s}\right)=\frac{1}{-s^{2}+4 i s+3} .
$$

c) By definition of the convolution product $f * g$ and the function f one has that

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-t) g(t) d t=2 \int_{x-1}^{x} g(t) d t
$$

If $x \leq 0$, then

$$
(f * g)(x)=2 \int_{x-1}^{x} g(t) d t=0 .
$$

For $x \in(0,1)$,

$$
(f * g)(x)=2 \int_{0}^{x} g(t) d t=\int_{0}^{x} e^{-t}-e^{-3 t} d t=\frac{1}{3} e^{-3 x}-e^{-x}+\frac{2}{3} .
$$

and for $x \geq 1$,

$$
\begin{aligned}
(f * g)(x) & =2 \int_{x-1}^{x} g(t) d t=-\frac{1}{3} e^{-3 x+3}+e^{-x+1}+\frac{1}{3} e^{-3 x}-e^{-x} \\
& =\frac{1}{3}\left(1-e^{3}\right) e^{-3 x}+(e-1) e^{-x} .
\end{aligned}
$$

Summing up,

$$
(f * g)(x)= \begin{cases}\frac{1}{3} e^{-3 x}-e^{-x}+\frac{2}{3} & \text { if } x \in(0,1) \\ \frac{1}{3}\left(1-e^{3}\right) e^{-3 x}+(e-1) e^{-x} & \text { if } x \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

d) In view of a) and b), we have that

$$
\hat{v}=\hat{f} \hat{g}=\widehat{f * g}
$$

and Fourier inversion implies that

$$
v=f * g .
$$

For an explicit expression for this convolution product see c). Hence, $\bar{v}=f * g$ is a particular solution to (5).
e) The general solution to an inhomogeneous linear differential equation can be obtained by adding a particular solution to a solution of the corresponding homogeneous equation, which in the case of (5) is

$$
\begin{equation*}
v^{\prime \prime}+4 v^{\prime}+3 v=0 . \tag{7}
\end{equation*}
$$

Since the roots of $\lambda^{2}+4 \lambda+3=0$ are exactly $\lambda=-1$ and $\lambda=-3$, the general (real) solution $v_{\text {hom }}$ to (7) is given by

$$
v_{\text {hom }}(t)=\alpha e^{-t}+\beta e^{-3 t} \quad \text { for } t \in \mathbb{R}
$$

with constants $\alpha, \beta \in \mathbb{R}$. Hence, the general solution to (5) is $v=\bar{v}+v_{\text {hom }}$ with \bar{v} as in d).

