
Mastermath midterm examination
Parallel Algorithms. Solution.

Teacher: Rob H. Bisseling, Utrecht University

October 23, 2019

Each of the four questions is worth 10 points.

1. (a) A BSP algorithm consists of a sequence of supersteps. A superstep
contains either a number of computation steps or a number of
communication steps, or in certain cases both, followed by a global
barrier synchronization.

In a computation superstep, each processor performs a sequence
of operations on local data. In a communication superstep, each
processor sends and receives a number of messages. In a mixed
superstep, both computation and communication take place.

At the end of a superstep, all processors synchronize. Each proces-
sor checks whether it has finished all its obligations of that super-
step. In the case of a computation superstep, it checks whether
the computations are finished. Processors wait until all others
have finished. When this happens, they all proceed to the next
superstep.

(b) An example of a balanced 4-relation is the situation where pro-
cessor P (0) sends four data words to P (1), P (1) sends four data
words to P (0), P (2) sends four data words to P (3), P (3) sends
four data words to P (2). All processors send and receive four data
words. Hence the h-relation is a 4-relation.

An example of an unbalanced 4-relation is when P (0) sends four
data words to P (1) and the other two processors are idle. The
maximum number sent or received by a processor is four. Hence
the h-relation is also a 4-relation.

1



2. (a) The parallel algorithm is given as Algorithm 1.

(b) Superstep (0) takes n/p operations since we flip a bit at most n/p
times. The cost is hence n/p+ l. Superstep (1) costs (p− 1)g + l
because processor P (0) receives p−1 data words (here: bits), and
the other processors send one data word. Superstep (2) is similar
to Superstep (0), and takes p operations. Its cost is p + l. The
total cost of the algorithm is

n

p
+ p+ (p− 1)g + 3l.

(c) P (s) actually needs to put a parity only if it is 1 (odd). So if
we initialise parity t = 0 for all t on P (0), we do not have to put
even parities. For long vectors (large n), the probabilty of both
parities is about equal, except for very small or very large d. In
that common case, we save half the communication cost. For
d ≈ 0, the probability of even parity becomes larger than half, so
we save even more. For d ≈ 1, we can reverse the roles of 0 and 1.

Algorithm 1 Parity computation for processor P (s).

b := n/p; . Superstep (0)
paritys := 0
for i := sb to (s+ 1)b− 1 do

if xi = 1 then
paritys := 1− paritys;

put paritys in P (0); . Superstep (1)

if s = 0 then . Superstep (2)
parity := 0
for t := 0 to p− 1 do

if parity t = 1 then
parity := 1− parity ;

2



3. (a) The matrix Pσ is defined by

(Pσ)ij =

{
1 if i = σ(j)
0 otherwise,

for 0 ≤ i, j < n.

Here, the matrix Pσ is the same as the identity matrix, except
for the columns k and r. We have akr = ark = 1, and all other
elements in columns k and r are zero. Note that Pσ is its own
transpose, and hence its own inverse.

(b) Multiplying A from the left by Pσ swaps its rows k and r. Multi-
plying A from the right swaps its columns k and r.

(c) The row and column swap are given as Algorithm 2. For brevity,
we write φ(i) = i mod M . Since the synchronization cost is high,
the row and column swaps must be carried out in the same su-
perstep. This is possible, but it requires special attention to the
matrix elements akk and arr. These are treated separately.

(d) Assume that φ(r) 6= φ(k), which is the worst case for communica-
tion. (If φ(r) = φ(k), no communication is needed.) A processor
that owns part of row k sends n/M data words for the row swap
and receives the same number of data words. The same holds for
column k. The diagonal processor (φ(k), φ(k)) needs to send both
a part for row k and a part for column k, including a single element
akk sent separately (once). This is also the maximum number of
data words any processor has to send or receive. Therefore, the
cost of Superstep (1) is (2n/M − 1)g + l. The computation in
Superstep (1) is for free in our benign cost model, and the cost of
this superstep is l. The total BSP cost of the algorithm is

(2
n

M
− 1)g + 2l.

3



Algorithm 2 Row and column swaps for P (s, t).

if φ(k) = s then . Superstep (0)
for all j : 0 ≤ j < n ∧ φ(j) = t ∧ j 6= k ∧ j 6= r do

put akj as âkj in P (φ(r), t);

if φ(r) = s then
for all j : 0 ≤ j < n ∧ φ(j) = t ∧ j 6= k ∧ j 6= r do

put arj as ârj in P (φ(k), t);

if φ(k) = t then
for all i : 0 ≤ i < n ∧ φ(i) = s ∧ i 6= k ∧ i 6= r do

put aik as âik in P (s, φ(r));

if φ(r) = t then
for all i : 0 ≤ i < n ∧ φ(i) = s ∧ i 6= k ∧ i 6= r do

put air as âir in P (s, φ(k));

if φ(k) = s ∧ φ(k) = t then
put akk as âkk in P (φ(r), φ(r));

if φ(r) = s ∧ φ(r) = t then
put arr as ârr in P (φ(k), φ(k));

if φ(k) = s ∧ φ(r) = t then
put akr as âkr in P (φ(r), φ(k));

if φ(r) = s ∧ φ(k) = t then
put ark as ârk in P (φ(k), φ(r));

if φ(k) = s then . Superstep (1)
for all j : 0 ≤ j < n ∧ φ(j) = t ∧ j 6= k ∧ j 6= r do

akj := ârj;

if φ(r) = s then
for all j : 0 ≤ j < n ∧ φ(j) = t ∧ j 6= k ∧ j 6= r do

arj := âkj;

if φ(k) = t then
for all i : 0 ≤ i < n ∧ φ(i) = s ∧ i 6= k ∧ i 6= r do

aik := âir;

if φ(r) = t then
for all i : 0 ≤ i < n ∧ φ(i) = s ∧ i 6= k ∧ i 6= r do

air := âik;

if φ(k) = s ∧ φ(k) = t then
akk := ârr;

if φ(r) = s ∧ φ(r) = t then
arr := âkk;

if φ(k) = s ∧ φ(r) = t then
akr := ârk;

if φ(r) = s ∧ φ(k) = t then
ark := âkr;

4



4. (a) We choose an M ×M block distribution for the n× n matrix C.
The element cij is computed at processor P (i div b, j div b), where
b = n/M is the block size. To compute the value

cij =
k−1∑
r=0

airbrj,

we need the values of row i of A and of column j of B. These
values are available at P (i div b, 0) and P (0, j div b), respectively.

At the start of the algorithm, we obtain all the rows needed. Pro-
cessor P (s, 0) thus has to broadcast its block of n/M rows of A
to all the other processors in its processor row P (s, ∗). Each row
has k elements.

The broadcast is most efficiently carried out as a two-phase broad-
cast, by first sending a set of n/p rows to each processor P (s, t) and
then broadcasting this set to the others in processor row P (s, ∗).
Note that we must spread the corresponding n/M × k block of
A by spreading the rows, and not the columns, because there are
too few columns (the matrix being too skinny). The broadcast of
the columns of B is carried out in a similar way, and its phases
are merged with those of A to save two synchronisations. The
computation is then done in the next (final) superstep for all the
n2/p local elements cij.

(b) In Superstep (0) of the algorithm, we perform phase 0 of the
broadcast for both A and B. Processor (0, 0) has most work,
as it sends out a block of size n/M × k of A, except the part it
keeps (n/p rows of size k), and similarly for B. The total cost
is thus 2(nk/M − nk/p)g + l = (2nk/p)(M − 1)g + l. In Super-
step (1), each received part of size n/p × k is broadcast, costing
2(nk/p)(M − 1)g + l for A and B together. In Superstep (2),
a perfectly balanced computation is carried out, each processor
performing 2k flops for each of its n2/p elements, at a cost of
2n2k/p+ l. The total cost is

2n2k

p
+

4nk(M − 1)

p
g + 3l.

5


