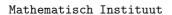
Universiteit Utrecht



Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Midterm Ergodic Theory Due Date: November 22, 2004

1. Consider $([0,1), \mathcal{B})$, where \mathcal{B} is the Lebesgue σ -algebra. Let $T : [0,1) \to [0,1)$ be the *Continued fraction* transformation, i.e., T0 = 0 and for $x \neq 0$

$$Tx = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor.$$

It is well-known that T is measure preseving and ergodic with respect to the Gauss-measure μ given by

$$\mu(B) = \int_B \frac{1}{\log 2} \frac{1}{1+x} dx$$

for every Lebesque set *B*. For each $x \in [0, 1)$ consider the sequence of digits of *x* defined by $a_n(x) = a_n = \lfloor \frac{1}{T^{n-1}x} \rfloor$. Show that

$$\lim_{n \to \infty} (a_1 a_2 \dots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)} \right)^{\frac{\log k}{\log 2}}$$

for Lebesque a.e. x.

- 2. Let T be a measure preserving and ergodic transformation on the probability space (X, \mathcal{F}, μ) . Let $g \in L^1(X, \mathcal{F}, \mu)$ be real valued, and $A = \{x \in X : g(x) = 0\}$. Define $f: X \to \mathbb{R}$ by f(x) = g(x) g(Tx) and set $f_n(x) = \sum_{i=0}^{n-1} f(T^i x), n \ge 1$. Show that if $\mu(A) > 0$, then for μ a.e. $x \in X$ there exist infinitely many positive integers n such that $f_n(x) = g(x)$.
- 3. Let (X, \mathcal{F}, μ) be a probability space, and let $T : X \to X$ measure preserving and ergodic. Consider the probability space (Y, \mathcal{G}, ν) , where

$$Y = X \times \{0\} \cup X \times \{1\},\$$

 \mathcal{G} the σ -algebra generated by sets of the form $A \times \{i\}$ with $A \in \mathcal{F}$, i = 0, 1, and ν the measure given by $\nu(A \times \{i\}) = \frac{1}{2}\mu(A)$. Define $S: Y \to Y$ by S(x, 0) = (x, 1) and S(x, 1) = (Tx, 0).

- (a) Show that S is measure preserving and ergodic with respect to ν .
- (b) Show that S is not strongly mixing.

- 4. Let (X, \mathcal{F}, μ) be a probability space, and $T : X \to X$ a measure preserving transformation. Consider the transformation $T \times T$ defined on $(X \times X, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ by $(T \times T)(x, y) = (Tx, Ty).$
 - (i) Show that $T \times T$ is measure preserving with respect to $\mu \times \mu$.
 - (ii) Show that T is strongly mixing with respect to μ if and only if $T \times T$ is strongly mixing with respect to $\mu \times \mu$.
 - (iii) Show that if $T = T_{\theta} = x + \theta \pmod{1}$ is an irrational rotation on [0, 1), then T_{θ} is **not** weakly mixing with respect to Lebesgue measure λ on [0, 1).
- 5. Let λ be the normalized Lebesque measure on $([0, 1), \mathcal{B})$, where \mathcal{B} is the Lebesgue σ -algebra. Consider the transformation $T : [0, 1) \to [0, 1)$ given by

$$Tx = \begin{cases} 3x & 0 \le x < 1/3\\ \frac{3}{2}x - \frac{1}{2} & 1/3 \le x < 1. \end{cases}$$

For $x \in [0, 1)$ let

$$s_1(x) = \begin{cases} 3 & 0 \le x < 1/3 \\ \frac{3}{2} & 1/3 \le x < 1, \end{cases}$$
$$h_1(x) = \begin{cases} 0 & 0 \le x < 1/3 \\ \frac{1}{2} & 1/3 \le x < 1, \end{cases}$$
$$a_1(x) = \begin{cases} 0 & 0 \le x < 1/3 \\ 1 & 1/2 \le x \le 1 \end{cases}$$

and

$$(1 \quad 1/3 \le x < 1)$$

= $s_n(x) = s_1(T^{n-1}x), h_n = h_n(x) = h_1(T^{n-1}x) \text{ and } a_n = h_n(x) = a_1$

Let $s_n = s_n(x) = s_1(T^{n-1}x)$, $h_n = h_n(x) = h_1(T^{n-1}x)$ and $a_n = h_n(x) = a_1(T^{n-1}x)$ for $n \ge 1$.

(a) Show that for any
$$x \in [0, 1)$$
 one has $x = \sum_{k=1}^{\infty} \frac{h_k}{s_1 s_2 \cdots s_k}$

- (b) Show that T is measure preseving and ergodic with respect to the measure λ .
- (c) Show that for each $n \ge 1$ and any sequence $i_1, i_2, \ldots, i_n \in \{0, 1\}$ one has

$$\lambda\left(\{x\in[0,1):a_1(x)=i_1,a_2(x)=i_2,\ldots,a_n(x)=i_n\}\right)=\frac{2^k}{3^n},$$

where $k = \#\{1 \le j \le n : i_j = 1\}.$

(c) Show that a_1, a_2, \ldots , is a sequence of independent identically distributed random variables on [0, 1).