Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Final Ergodic Theory Due Date: January 31, 2005

1. Consider $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Lebesgue σ -algebra, and λ is Lebesgue measure. Let $\beta > 1$ be a real number satisfying $\beta^3 = \beta^2 + \beta + 1$, and consider the β -transformation $T_{\beta} : [0,1) \to [0,1)$ given by $T_{\beta}x = \beta x \pmod{1}$. Define a measure ν on \mathcal{B} by

$$\nu(A) = \int_A h(x) \, dx \, ,$$

where

$$h(x) = \begin{cases} \frac{1}{\frac{1}{\beta} + \frac{2}{\beta^2} + \frac{3}{\beta^3}} \left(1 + \frac{1}{\beta} + \frac{1}{\beta^2} \right) & \text{if } x \in [0, 1/\beta) \\ \frac{1}{\frac{1}{\beta} + \frac{2}{\beta^2} + \frac{3}{\beta^3}} \left(1 + \frac{1}{\beta} \right) & \text{if } x \in [1/\beta, 1/\beta + 1/\beta^2) \\ \frac{1}{\frac{1}{\beta} + \frac{2}{\beta^2} + \frac{3}{\beta^3}} \cdot 1 & \text{if } x \in [1/\beta + 1/\beta^2, 1) , \end{cases}$$

(a) Show that T_{β} is measure preserving with respect to ν .

(b) Let

$$X = \left([0, \frac{1}{\beta}) \times [0, 1) \right) \times \left([\frac{1}{\beta}, \frac{1}{\beta} + \frac{1}{\beta^2}) \times [0, \frac{1}{\beta} + \frac{1}{\beta^2}) \right) \times \left([\frac{1}{\beta} + \frac{1}{\beta^2}, 1) \times [0, \frac{1}{\beta}) \right)$$

Let \mathcal{C} be the restriction of the two dimensional Lebesgue σ -algebra on X, and μ the normalized (two dimensional) Lebesgue measure on X. Define on X the transformation \mathcal{T}_{β} as follows :

$$\mathcal{T}_{\beta}(x,y) := \left(T_{\beta}x, \frac{1}{\beta}(\lfloor \beta x \rfloor + y)\right) \text{ for } (x,y) \in X$$

- (i) Show that \mathcal{T}_{β} is measurable and measure preserving with respect to μ . Prove also that \mathcal{T}_{β} is one-to-one and onto μ a.e.
- (ii) Show that \mathcal{T}_{β} is the natural extension of T_{β} .
- 2. Consider $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Lebesgue σ -algebra, and λ is Lebesgue measure. Let $T : [0,1) \to [0,1)$ be defined by

$$Tx = \begin{cases} n(n+1)x - n & \text{if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right) \\ 0 & \text{if } x = 0. \end{cases}$$

Define $a_1: [0,1) \to [2,\infty]$ by

$$a_1 = a_1(x) = \begin{cases} n+1 & \text{if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right), \ n \ge 1\\ \infty & \text{if } x = 0. \end{cases}$$

For $n \ge 1$, let $a_n = a_n(x) = a_1(T^{n-1}x)$.

- (a) Show that T is measure preserving with respect to Lebesgue measure λ .
- (b) Show that for λ a.e. x there exists a sequence a_1, a_2, \cdots of positive integers such that $a_i \geq 2$ for all $i \geq 1$, and

$$x = \frac{1}{a_1} + \frac{1}{a_1(a_1 - 1)a_2} + \dots + \frac{1}{a_1(a_1 - 1)\cdots a_{k-1}(a_{k-1} - 1)a_k} + \dots$$

- (c) Consider the dynamical system (X, \mathcal{F}, μ, S) , where $X = \{2, 3, \dots\}^{\mathbb{N}}$, \mathcal{F} the σ -algebra generated by the cylinder sets, S the left shift on X, and μ the product measure with $\mu(\{x : x_1 = j\}) = \frac{1}{j(j-1)}$. Show that $([0,1), \mathcal{B}, \lambda, T)$ and (X, \mathcal{F}, μ, S) are isomorphic.
- 3. Use the Shannon-McMillan-Breiman Theorem (and the Ergodic Theorem if necessary) in order to show that
 - (a) $h_{\mu}(T) = \log \beta$, where $\beta = \frac{1 + \sqrt{5}}{2}$, T the β -transformation defined on $([0, 1), \mathcal{B})$ by $Tx = \beta x \mod 1$, and μ the T-invariant measure given by $\mu(B) = \int_{B} g(x) dx$, where

$$g(x) = \begin{cases} \frac{5+3\sqrt{5}}{10} & 0 \le x < 1/\beta \\ \frac{5+\sqrt{5}}{10} & 1/\beta \le x < 1. \end{cases}$$

- (b) $h_{\mu}(T) = -\sum_{j=1}^{m} \sum_{i=1}^{m} \pi_i p_{ij} \log p_{ij}$, where T is the ergodic Markov shift on the space $(\{1, 2, \dots, m\}^{\mathbb{Z}}, \mathcal{F}, \mu)$, with \mathcal{F} is the σ -algebra generated by the cylinder sets and μ is the Markov measure with stationary distribution $\pi = (\pi_1, \pi_2, \dots, \pi_m)$ and transition probabilities $(p_{ij}: i, j = 1, \dots, m)$.
- 4. Let X be a compact metric space, and \mathcal{B} the Borel σ -algebra on X. Let $T: X \to X$ be a continuous transformation. Let $N \geq 1$ and $x \in X$.
 - (a) Show that $T^N x = x$ if and only if $\frac{1}{N} \sum_{i=0}^{N-1} \delta_{T^i x} \in M(X,T)$. (δ_y is the Dirac measure concentrated at the point y.)
 - (b) Suppose $X = \{1, 2, \dots, N\}$ and $Ti = i+1 \pmod{(N)}$. Show that T is uniquely ergodic. Determine the unique ergodic measure.
- 5. Let (X, \mathcal{F}, μ) be a probability space and $T : X \to X$ a measure preserving transformation. Let k > 0.
 - (a) Show that for any finite partition α of X one has $h_{\mu}(\bigvee_{i=0}^{k-1} \alpha, T^k) = kh_{\mu}(\alpha, T)$.
 - (b) Prove that $kh_{\mu}(T) \leq h_{\mu}(T^k)$.
 - (c) Prove that $h_{\mu}(\alpha, T^k) \leq kh_{\mu}(\alpha, T)$.
 - (d) Prove that $h_{\mu}(T^k) = kh_{\mu}(T)$.