Final Ergodic Theory

Due Date: January 31, 2005

1. Consider $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Lebesgue σ-algebra, and λ is Lebesgue measure. Let $\beta>1$ be a real number satisfying $\beta^{3}=\beta^{2}+\beta+1$, and consider the β-transformation $T_{\beta}:[0,1) \rightarrow[0,1)$ given by $T_{\beta} x=\beta x(\bmod 1)$. Define a measure ν on \mathcal{B} by

$$
\nu(A)=\int_{A} h(x) d x
$$

where

$$
h(x)=\left\{\begin{array}{ll}
\frac{1}{\frac{1}{\beta}+\frac{2}{\beta^{2}}+\frac{3}{\beta^{3}}}\left(1+\frac{1}{\beta}+\frac{1}{\beta^{2}}\right) & \text { if } x \in[0,1 / \beta) \\
\frac{1}{\beta}+\frac{2}{\beta^{2}}+\frac{3}{\beta^{3}} \\
\frac{1}{\beta}+\frac{2}{\beta^{2}}+\frac{3}{\beta^{3}} & \left.1+\frac{1}{\beta}\right)
\end{array}, \text { if } x \in\left[1 / \beta, 1 / \beta+1 / \beta^{2}\right), \text { if } x \in\left[1 / \beta+1 / \beta^{2}, 1\right), ~ \$\right.
$$

(a) Show that T_{β} is measure preserving with respect to ν.
(b) Let

$$
X=\left(\left[0, \frac{1}{\beta}\right) \times[0,1)\right) \times\left(\left[\frac{1}{\beta}, \frac{1}{\beta}+\frac{1}{\beta^{2}}\right) \times\left[0, \frac{1}{\beta}+\frac{1}{\beta^{2}}\right)\right) \times\left(\left[\frac{1}{\beta}+\frac{1}{\beta^{2}}, 1\right) \times\left[0, \frac{1}{\beta}\right)\right)
$$

Let \mathcal{C} be the restriction of the two dimensional Lebesgue σ-algebra on X, and μ the normalized (two dimensional) Lebesgue measure on X. Define on X the transformation \mathcal{T}_{β} as follows:

$$
\mathcal{T}_{\beta}(x, y):=\left(T_{\beta} x, \frac{1}{\beta}(\lfloor\beta x\rfloor+y)\right) \quad \text { for } \quad(x, y) \in X
$$

(i) Show that \mathcal{I}_{β} is measurable and measure preserving with respect to μ. Prove also that \mathcal{T}_{β} is one-to-one and onto μ a.e.
(ii) Show that \mathcal{T}_{β} is the natural extension of T_{β}.
2. Consider $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Lebesgue σ-algebra, and λ is Lebesgue measure. Let $T:[0,1) \rightarrow[0,1)$ be defined by

$$
T x= \begin{cases}n(n+1) x-n & \text { if } x \in\left[\frac{1}{n+1}, \frac{1}{n}\right) \\ 0 & \text { if } x=0 .\end{cases}
$$

Define $a_{1}:[0,1) \rightarrow[2, \infty]$ by

$$
a_{1}=a_{1}(x)= \begin{cases}n+1 & \text { if } x \in\left[\frac{1}{n+1}, \frac{1}{n}\right), n \geq 1 \\ \infty & \text { if } x=0\end{cases}
$$

For $n \geq 1$, let $a_{n}=a_{n}(x)=a_{1}\left(T^{n-1} x\right)$.
(a) Show that T is measure preserving with respect to Lebesgue measure λ.
(b) Show that for λ a.e. x there exists a sequence a_{1}, a_{2}, \cdots of positive integers such that $a_{i} \geq 2$ for all $i \geq 1$, and

$$
x=\frac{1}{a_{1}}+\frac{1}{a_{1}\left(a_{1}-1\right) a_{2}}+\cdots+\frac{1}{a_{1}\left(a_{1}-1\right) \cdots a_{k-1}\left(a_{k-1}-1\right) a_{k}}+\cdots .
$$

(c) Consider the dynamical system (X, \mathcal{F}, μ, S), where $X=\{2,3, \cdots\}^{\mathbb{N}}, \mathcal{F}$ the σ-algebra generated by the cylinder sets, S the left shift on X, and μ the product measure with $\mu\left(\left\{x: x_{1}=j\right\}\right)=\frac{1}{j(j-1)}$. Show that $([0,1), \mathcal{B}, \lambda, T)$ and (X, \mathcal{F}, μ, S) are isomorphic.
3. Use the Shannon-McMillan-Breiman Theorem (and the Ergodic Theorem if necessary) in order to show that
(a) $h_{\mu}(T)=\log \beta$, where $\beta=\frac{1+\sqrt{5}}{2}$, T the β-transformation defined on $([0,1), \mathcal{B})$ by $T x=\beta x \bmod 1$, and μ the T-invariant measure given by $\mu(B)=\int_{B} g(x) d x$, where

$$
g(x)= \begin{cases}\frac{5+3 \sqrt{5}}{10} & 0 \leq x<1 / \beta \\ \frac{5+\sqrt{5}}{10} & 1 / \beta \leq x<1\end{cases}
$$

(b) $h_{\mu}(T)=-\sum_{j=1}^{m} \sum_{i=1}^{m} \pi_{i} p_{i j} \log p_{i j}$, where T is the ergodic Markov shift on the space $\left(\{1,2, \cdots, m\}^{\mathbb{Z}}, \mathcal{F}, \mu\right)$, with \mathcal{F} is the σ-algebra generated by the cylinder sets and μ is the Markov measure with stationary distribution $\pi=$ $\left(\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right)$ and transition probabilities ($p_{i j}: i, j=1, \cdots, m$).
4. Let X be a compact metric space, and \mathcal{B} the Borel σ-algebra on X. Let $T: X \rightarrow X$ be a continuous transformation. Let $N \geq 1$ and $x \in X$.
(a) Show that $T^{N} x=x$ if and only if $\frac{1}{N} \sum_{i=0}^{N-1} \delta_{T^{i} x} \in M(X, T)$. (δ_{y} is the Dirac measure concentrated at the point y.)
(b) Suppose $X=\{1,2, \cdots, N\}$ and $T i=i+1(\bmod (N))$. Show that T is uniquely ergodic. Determine the unique ergodic measure.
5. Let (X, \mathcal{F}, μ) be a probability space and $T: X \rightarrow X$ a measure preserving transformation. Let $k>0$.
(a) Show that for any finite partition α of X one has $h_{\mu}\left(\bigvee_{i=0}^{k-1} \alpha, T^{k}\right)=k h_{\mu}(\alpha, T)$.
(b) Prove that $k h_{\mu}(T) \leq h_{\mu}\left(T^{k}\right)$.
(c) Prove that $h_{\mu}\left(\alpha, T^{k}\right) \leq k h_{\mu}(\alpha, T)$.
(d) Prove that $h_{\mu}\left(T^{k}\right)=k h_{\mu}(T)$.

