Department of Mathematics, Faculty of Science, UU.
Made available in electronic form by the $\mathcal{T B}_{\mathcal{B}} \mathcal{C}$ of A-Eskwadraat In $2005 / 2006$, the course WISM464 was given by K. Dajani.

Ergodic theory (WISM464) 10 November 2005

Question 1

Consider $([0,1), \mathcal{B})$, where \mathcal{B} is the Lebesgue σ-algebra. Let $T:[0,1) \rightarrow[0,1)$ be the continued fraction transformation, i.e., $T 0=0$ and for $x \neq 0$,

$$
T x=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor .
$$

It is well-known that T is measure preserving and ergodic with respect to the Gauss-measure μ given by

$$
\mu(B)=\int_{B} \frac{1}{\log 2} \frac{1}{1+x} \mathrm{~d} x
$$

for every Lebesque set B. For each $x \in[0,1)$ consider the sequence of digits of x defined by $x_{n}(x)=a_{n}=\left\lfloor\frac{1}{T^{n-1} x}\right\rfloor$. Let λ denote the normalized Lebesgue measure on $[0,1)$.
a) Show that $\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\infty \lambda$ a.e.
b) Show that

$$
\lim _{n \rightarrow \infty}\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}=\prod_{k=1}^{\infty}\left(1+\frac{1}{k(k+2)}\right)^{\frac{\log k}{\log 2}}
$$

λ a.e.

Question 2

Let (X, \mathcal{F}, μ) be a probability space, and $T: X \rightarrow X$ a measure preserving transformation. Let $A \in \mathcal{F}$ with $\mu(A)>0$. For $x \in A$ let $n(x)$ be the first return time of x to A, and μ_{A} the induced measure on the σ-algebra $\mathcal{F} \cap A$ on A. Consider the induced transformation T_{A} of T on A given by $T_{A} x=T^{n(x)} x$.
a) Show that if T_{A} is ergodic and $\mu\left(\bigcup_{k \geq 1} T^{-k} A\right)=1$, then T is ergodic.
b) Assume further that T is invertible and ergodic.
(i) Show that

$$
\int_{A} n(x) \mathrm{d} \mu=1
$$

(ii) Prove that

$$
\mu_{A}\left(\left\{x \in A: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} n\left(T_{A}^{i}(x)\right)=\frac{1}{\mu(A)}\right\}\right)=1
$$

Question 3

Let (X, \mathcal{F}, μ) be a probability space, and $T: X \rightarrow X$ a measure preserving transformation. Let $f \in L^{1}(X, \mathcal{F}, \mu)$.
a) Show that if $f(T x) \leq f(X) \mu$ a.e., then $f(x)=f(T x) \mu$ a.e.
b) Show that $\lim _{n \rightarrow \infty} \frac{f\left(T^{n} x\right)}{n}=0 \mu$ a.e.

Question 4

Let (X, \mathcal{F}, μ) be a probability space, and $T: X \rightarrow X$ a measure preserving transformation. Consider the transformation $T \times T$ defined on $(X \times X, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ by $(T \times T)(x, y)=(T x, T y)$.
a) Show that T is strongly mixing with respect to μ if and only if $T \times T$ is strongly mixing with respect $\mu \times \mu$.
b) Show that T is weakly mixing with respect to μ if and only if $T \times T$ is ergodic with respect to $\mu \times \mu$.
c) Show that $T=T_{\theta}=x+\theta(\bmod 1)$ is an irrational rotation on $[0,1)$, then T_{θ} is not weakly mixing with respect to $\lambda \times \lambda$ where λ is the normalized Lebesgue measure on $[0,1)$.

Question 5

Let λ be the normalized Lebesgue measure on $([0,1), \mathcal{B})$ where \mathcal{B} is the Lebesgue σ-algebra. Consider the transformation $T:[0,1) \rightarrow[0,1)$ given by

$$
T x= \begin{cases}3 x & 0 \leq x<1 / 3 \\ \frac{3}{2} x-\frac{1}{2} & 1 / 3 \leq x<1\end{cases}
$$

For $x \in[0,1)$ let

$$
\begin{aligned}
& s_{1}(x)= \begin{cases}3 & 0 \leq x<1 / 3 \\
\frac{3}{2} & 1 / 3 \leq x<1\end{cases} \\
& h_{1}(x)= \begin{cases}0 & 0 \leq x<1 / 3 \\
\frac{1}{2} & 0 \leq x<1\end{cases}
\end{aligned}
$$

and

$$
a_{1}(x)= \begin{cases}0 & 0 \leq x<1 / 3 \\ 1 & 1 / 3 \leq x<1\end{cases}
$$

Let $s_{n}=s_{n}(x)=s_{1}\left(T^{n-1} x, h_{n}=h_{n}(x)=h_{1}\left(T^{n-1} x\right)\right.$ and $a_{n}=a_{n}(x)=a_{1}\left(T^{n-1} x\right)$ for $n \geq 1$.
a) Show that for any $x \in[0,1)$ one has

$$
x=\sum_{k=1}^{\infty} \frac{h_{k}}{s_{1} s_{2} \cdots s_{k}} .
$$

b) Show that T is measure preserving and ergodic with respect to the measure λ.
c) Shwo that for each $n \geq 1$ and any sequence $i_{1}, i_{2}, \ldots i_{n} \in\{0,1\}$ one has

$$
\lambda\left(\left\{x \in[0,1): a_{1}(x)=i_{1}, a_{2}(x)=i_{2}, \ldots a_{n}(x)=i_{n}\right\}\right)=\frac{2^{k}}{3^{n}}
$$

where $k=\#\left\{1 \leq j \leq n: i_{j}=1\right\}$.

