
Exam ”Wave Attractors”

24 June 2019, 13:30-16:30

No books or lecture notes allowed. Computations can all use rounded estimates. There

are 18 subquestions (10 min/question). Weight of question is indicated in points (pt) - 32

points in total.

1 To mimic certain phenomena in the ocean, a tank experiment is devised on a table that

rotates with angular velocity Ω. In that experimental set-up, fluid motions are believed to

be described by equations governing the evolution of velocity vector (u, v, w) and reduced

pressure p (a perturbation of the hydrostatic pressure), given by:

ut − 2Ωv = −px

vt + 2Ωu = −py

wt = −pz

ux + vy + wz = 0,

where subscript-derivative notation is used.

1a (2 pt) Give at least 4 assumptions used to obtain these equations from the continuity and

Navier-Stokes equations1.

(1) constant density, (2) transformation to a co-rotating frame of reference, rotating with

uniform background rotation, Ω = constant, (3) small-amplitude perturbations, allowing

linearisation (neglect of nonlinear terms), (4) use of reduced pressure (absorbing gravity and

1In a non-rotating frame, the continuity and Navier-Stokes equations are given by

∇ · u = 0 (1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ g + ν∇2u (2)
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centrifugal force, (5) steady background rotation, hence neglect of Euler force ∝ dΩ/dt, (6)

(ideal) inviscid fluid, (7) incompressible flow (filtering out sound waves).

1b (2 pt) Assume the presence of a plane, monochromatic wave ∝ exp[i(kx + mz − ωt)],

propagating in the x, z-plane. What condition do free wave solutions need to satisfy?

Inserting the ansatz into the equations, (u, v, w, p) = (U, V,W,P ) exp[i(kx + mz − ωt)],

which has ∂y = 0, one obtains

U − iV f/ω = Pk/ω

V = −iUf/ω

P = Wω/m

W = −Uk/m,

which, with f ≡ 2Ω, combines into

f2

ω2
− 1− k2

m2
= 0, (3)

leading to the dispersion relation, a relation between wave frequency and wave vector,

ω2 =
f2m2

k2 +m2
. (4)

1c (2 pt) Compute velocity vectors and show that they follow circular trajectories in planes

that are perpendicular to the phase velocity vector.

Hint: write down explicit, real-valued expressions for u, v, w, p. The reduced pressure is

helpful in the next subquestion.

Using subscript r to denote the real part, e.g. ur ≡ <(u), we obtain

ur = U cos(kx+mz − ωt),

vr = U
f

ω
sin(kx+mz − ωt),

wr = − k
m
U cos(kx+mz − ωt),

pr = −ωk
m2

U cos(kx+mz − ωt).
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This implies ur, wr, pr are in phase, and vr is out-of-phase. This implies that fluid particles

move simultaneously in x and z direction at a velocity magnitude U
√

1 + k2/m2 = Uf/ω,

which is identical to the amplitude of vr, although vr lags by a quarter cycle. Hence

the velocity vector traces a circular motion inclined under a slope −1/s making an angle

arctan(−k/m) = π/2−α with the horizontal, where slope s = tanα = m/k is the inclination

of the wave vector k = (k,0,m) with the horizontal, verifying that u · k = 0.

1d (1 pt) Derive an energy conservation equation for these waves by defining and computing

the energy density, E, and energy flux, F.

Multiply the momentum equation by u and the continuity equation by p and add. This

yields

Et +∇ · F = 0, (5)

where E ≡ 1
2(u2 + v2 + w2) and F = pu.

1e (1pt) Compute the energy flux averaged over one wave period (indicated by a bar) and

show it satisfies F̄ · k = 0.

Inserting the real expressions of ur and pr into F, upon averaging over one period we find

F̄ =
ωkU2

2m3
(−m, 0, k), (6)

indeed directed along the velocity vector direction and perpendicular to k.

1f (2pt) Assume the fluid is confined to a channel along the x-direction, and that its maximum

depthH is small compared to the width of the channel, L. Use scaling to show that the vertical

profile of the pressure is determined by the hydrostatic pressure only, i.e. use a perturbation

expansion in the aspect ratio, H/L, to show that the equations governing the lowest order
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fields are given by

ut − v = −px

vt + u = −py

0 = −pz

ux + vy + wz = 0,

Replace the original variables by the following dimensionless and scaled (primed) variables

(x, y) = L(x′, y′), z = Hz′, t = t′/f, (u, v) = Lf(u′, v′), w = Hfw′, p = L2f2p′.

Subsequently, divide the horizontal momentum equations by Lf2, the vertical momentum

equation by L2f2/H. Then, a small parameter δ ≡ (H2/L2) appears at a single spot,

namely multiplying the vertical acceleration term. Inserting perturbations expansions u′ =

u0 + δu1 + δ2u2 + · · · , and similarly for all other variables, and ordering terms of the same

power in δ (assuming all fields u0, u1, u2, · · · are of O(1)), to lowest order we receive the given

approximate equations (upon dropping the subscript 0.) This implies that lowest-order re-

duced pressure p0 (here p) is independent of depth z, and, hence is determined by surface

pressure (due, e.g. to surface waves or atmospheric pressure) only.

1g (4pt) We will use these equations assuming that the surface z = 0 is rigid, the channel is

located between y = 0 and y = 1, and the bottom z = −h(y), is decreasing exponentially,

h = exp(−sy). Here s > 0 indicates a constant slope parameter. Searching for a plane

monochromatic wave that propagates down-channel, show that the equation governing a

suitably defined stream function field ψ = Ψ(y) exp i(kx− ωt) is given by

Ψyy + sΨy − (k2 +
ks

ω
)Ψ = 0. (7)

Since p is z-independent, so are u, v and horizontal divergence ux + vy. Therefore w must

be linear in z. In order to comply with the surface w = 0 and bottom w = −vhy boundary

conditions

w =
z

h
vhy. (8)

This implies that wz = vhy/h, so that the horizontal transport vector h(u, v) must be non-

divergent (hu)x + (hv)y = 0. Therefore a transport streamfunction ψ can be defined through
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hu = −ψy, hv = ψx. Inserting this in the vorticity (q = vx−uy) equation, q+vhy/h = 0t hat

we can extract by cross-differentiation from the horizontal momentum equations, we obtain

∂

∂t

(
1

h
(ψxx + ψyy + (

1

h
)yψy

)
+
hyψx
h2

= 0. (9)

Now using the plane wave ansatz, ψ = Ψ(y) exp i(kx− ωt), using hy = −sh, yields

Ψyy + sΨy − (k2 +
ks

ω
)Ψ = 0, (10)

as desired.

1h (1pt) What boundary conditions does Ψ(y) need to satisfy?

As there can be no flow through the boundaries of the channel, Ψ = 0 at y = 0, 1.

1i (1pt) Find one (or more) solutions for Ψ satisfying these boundary conditions.

Since there is no explicit y-dependence, we can insert a trial solution Ψ = exp(λy), and

require λ2 + sλ− k− ksω = 0. This is solved by λ± = − s
2 ±

√
s2

4 + k2 + sk
ω . This leads to expo-

nentially growing or decaying solutions that are unable to satisfy vanishing streamfunction at

both y = 0 and y = 1 unless the argument of the square root is negative. Defining therefore

l2 = −( s
2

4 + k2 + sk
ω ), we find solutions

ψ = ψ̂ exp[−sy/2 + i(kx− ωt)] sin(ly), (11)

vanishing at the boundaries when l = nπ, n ∈ N. (The cos(ly) are ruled out by the boundary

conditions.)

1j (1pt) Discuss any possible constraints on the wave propagation that follow from the solution

and boundary condition.

The expression for l2 can be rewritten in terms of frequency as

ω =
−sk

k2 + l2 + s2/4
. (12)
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This shows that as ω > 0 by convention, for s > 0 the wave needs to have k < 0, hence

propagate its phase with the shallow side on its right, looking into the direction of propagation

(i.e. into negative x direction).

1k (2pt) Discuss whether this wave solution gives a complete view of the free waves that can

propagate in a rotating channel filled with a homogeneous-density fluid.

No. First of all it is just the lowest order term of an in principle infinite set of terms.

Who knows how the summed series sets up the impression we get from the lowest order field...

Second, the exact equations exhibit inertial waves, which, in the presence of a sloping bottom,

should exhibit wave focusing onto an attractor.

2 We model the dynamics of internal gravity waves in a trench, filled with a non-rotating,

uniformly-stratified fluid, N ≈ 4× 10−4rad/s, in the transverse x, z plane. The trench has a

vertical wall at x = 0, a flat bottom of depth H = 8km over half its width, and a parabolically-

curved slope. The total width of the trench spans L = 24km. The bottom and slope are

given in dimensionless description by

z = −τ, 0 ≤ x ≤ 1/2,

z = 4τx(x− 1), 1/2 ≤ x ≤ 1.

The vertical coordinate is stretched relative to the horizontal, such that the dimensionless

depth,

τ =
H

L

(
N2

ω2
− 1

)1/2

. (13)

For internal gravity wave of frequency ω, this stretching ensures that an internal wave beam

propagates its energy under an angle of 45 degrees with the horizontal.

2a (3pt) Make a sketch of the model configuration and, as a function of dimensionless depth

τ , locate all critical points at the boundary (where the slope is critical, or abruptly changing

from subcritical to supercritical).
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z = −τ
x = 0

x

z

Critical points exist in the three acute corners (which have ’all’ inclinations) and in one

point on the parabolic bottom where its slope equals 1, namely at (xc, zc) = (12(1+ 1
4τ ),−τ(1−

1
16τ2

), provided xc > 0, i.e. provided τ > 1
4 . For smaller τ -values the bottom is everywhere

subcritical and the corner (1, 0) attracts. In that case there are only 3 critical points (the

corners).

2b (1pt) Compute the dimensionless depth and frequency intervals for which we can expect

to find 1-1 wave attractors, defined as having one reflection at the top and one at the sloping

side wall.

1-1 attractors are found in between two degenerate cases, namely (i) when (1,0) connects

to (0,−τ); this happens for τ = 1, and (ii) when (0,0) connects to the critical point (xc,−xc),

which happens when zc = −τ(1− 1
4τ )(1+ 1

4τ ) = −xc = −1
2(1+ 1

4τ ). Dividing out the common

factor shows this happens for τ = 3/4. Hence for 3/4 ≤ τ ≤ 1 we have 1-1 attractors. In terms

of frequency we have to convert this from τ ’s definition: for N√
(L/H)2+1

≤ ω ≤ N√
(3L/4H)2+1

.

Given the values of N,H,L, we estimate: 1.33× 10−4 ≤ ω ≤ 1.6× 10−4

2c (2pt) Estimate dimensionless depth τ for the semidiurnal tidal frequency ω = 1.4 ×

10−4rad s−1 and check whether it sits in the 1-1 attractor interval. Discuss the likelihood

that the semidiurnal tide can manifest itself as such an attractor.

The previously estimated interval shows it is likely that the semidiurnal tide sits in the

1-1 attractor band. Indeed, τ = 8
24

(
( 4
1.4)2 − 1

)1/2 ≈ √7/3 ≈ 0.9 < 1 also confirms it sits in

the 1-1 τ interval.
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2d (1pt) Use the critical point locations to graphically construct fundamental intervals for

the 1-1 attractor.

Take a typical value for τ relatively large. Then find FIs by mapping the lower left corner

up to the surface to (τ, 0), which gives the left boundary of the segment whose right boundary

is at (0,1). The second one should be launched from the critical point on the parabola, upward,

and its intersection with the left wall, gives a vertical FI between that intersection and the

origin.

2e (2pt) Using the critical points, compute the fundamental intervals for τ = 3/4.

For τ = 3/4, the critical location is at (xc, zc) = (2/3,−2/3). Then fundamental intervals

(FIs) are obtained by mapping one critical point (0,−τ), say, along the characteristic z = x−τ

up to z = 0 and find xs = τ = 3/4. So the interval 3/4 ≤ x ≤ 1 at z = 0 serves e.g. as the first

FI. The second is obtained by mapping the critical point at the bottom along z = −x+xc+zc

to the surface, z = 0. But we find xs = xc + zc = 0. Hence, for τ = 3/4 we therefore find that

the surface FI shrinks to the corner point (0,0).

2f (2pt) Compute the attractor location for τ = 3/4.

It is the degenerate line z = −x for 0 ≤ x ≤ 2/3.

2g (2pt) Discuss qualitatively how to construct internal waves that are forced in a fundamental

interval.

Prescribe partial pressure on the fundamental interval, which is half the pressure at that

interval. It is invariant along the webs of characteristics launched from that interval when

partial pressure is taken real. In that case streamfunction is zero at that interval, so it

prescribes a free, standing (sloshing) internal gravity wave (at least over the region reached

by that FI. The complete pressure and streamfunction fields are also determined by prescribed

partial pressures in the other FIs.
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If the partial pressure is taken complex, but still the same over the whole webs, one constructs

a free propagating internal wave field.

If however, the partial pressure is taken invariant over the two half-webs emanating from the

FI, internal waves propagate into the fluid domain (and towards the attractor).
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