Exam Software Testing \& Verification 2013/2014 4th June 2014, 13:15-15:15, BBL-165

Lecturer: Wishnu Prasetya

1. [CFG-based testing, 2 pt$]$ Consider this program:
```
Integer isMemberOf(u:String, s:List<String >) \{
    if ( \(\mathrm{s}=\) null )
            return null ;
    int \(\mathrm{k}=0\);
    for (v:String in s) \{
        if (u.equals(v))
                return \(k\);
        k++ ;
    \}
    return -1 ;
\}
```

(a) Give a control flow graph that correponds to the program. Label each node with the line numbers of the statements it represents.
Answer:

(b) Give a set of test paths that would give full node coverage, but not full edge coverage. Answer: Not possible for the above program.
(c) Suppose in the context where isMemberOf is called, the list s is never null nor empty. List all prime paths which are impossible to be toured, and specify for each of them if it can still be toured with detour or sidetrip.

Answer:

[2,3]
[2,4,5,9] , can still be covered with sidetrip.
(d) Given a CFG G, let's define the TR (Test Requirement) of k-path coverage to consist of all paths in G of length up to k. As in A\&O, we define the length of a path to be the number of edges that the path consists of. Prove that the prime path coverage criterion does not subsume k-path coverage, for $k \geq 3$.

Answer: Consider the following simple control flow graph:

These are the prime paths:
[0,1,0]
[0,1,2]
[1,0,1]
A single set that cover them all:
[0,1,0,1,2]
This does not tour the path $[1,0,1,0]$ of length 3 .
2. [Black-box partition-based testing, 2 pt$]$ To test a program P we have identified browser, user, and query to be three characteristics that influence the behavior of P. So abstractly, a test-case for P is a tuple $P(b, u, q)$ specifying the values of each of these characteristics that are to be used in the test-case.
We decide to partition these characteristics into blocks as shown below; the names between brackets are abbreviations you can use to refer to them.

Characteristic	\#blocks	Blocks
browser	4	Chrome (BC), Mozilla (BM), IE (BIE), Opera (BO)
user	3	Member (UM), Admin (BA), Intruder (UI)
query	3	Normal (QT), WithInjection (QWI), Illegal (QI)

(a) Give a smallest possible test set that would give you full pair-wise as well as each-choice coverage.
Answer:
(BC,UM,QT)
(BC,BA,QWI)
(BC,UI,QI)
(BM,UM,QI)
(BM,BA,QT)
(BM,UI,QWI)
(BIE,UM,QWI)
(BIE,BA,QI)
(BIE,UI,QT)
(BO,UM,QT)
(BO,BA,QWI)
(BO,UI, QI)
(b) For each of the following constraints, indicate whether it is still possible to give full pair-wise coverage, when the constraint is imposed. Motivate your answer.
i. Users of types 'Member' and 'Admin' always submit normal queries.

Answer: not possible
ii. Intruders will try all types of browsers.

Answer: possible
iii. Users of type 'Member', when they use Chrome, cannot submit illegal queries.

Answer: possible, in fact the above test set does not contain (UM,BC,QI)
(c) Consider now the following test cases:

- $t c_{1}=P(I E$, Admin, WithInjection $)$
- $t c_{2}=P($ IE, Intruder, WithInjection $)$

Give a smallest possible test set that would give full Multiple Base Choice Coverage (MBCC) using the above test cases as the base tests; the base chocies are thus the blocks listed above.
Answer:
(BIE,BA,QWI)
(BIE,UI,QWI)
(BC,BA,QWI)
(BM,BA,QWI)
(BO,BA,QWI)
(BC,UI,QWI)
(BM,UI,QWI)
(BO,UI,QWI)
(BIE,UM,QWI)
(BIE,BA,QT)
(BIE,BA,QI)
(BIE,UI,QT)
(BIE,UI,QI)
(d) Suppose we have C_{1}, \ldots, C_{k} as characteristics, and each C_{i} is divided into $\left|C_{i}\right|$ number of blocks. Suppose we have N number of base tests, such that for characteristic i, its number of base choices is m_{i}. Give a formula that specifies general minimum on the number of test cases that will give you full MBCC coverage, based on those N base tests. General here means, that in any situation the number of needed test cases would be at least that specified minimum, although in some situation you may be able to eliminate some duplicates and hence needing less then that general minimum.
Answer: The original question was to give a minimum. But this term is perhaps not specific enough, whether it means the minimum for a particular case, or the minimum over all cases. This is the formula for the general minimum:
$N+N * \Sigma_{i=1}^{k}\left(\left|C_{i}\right|-m_{i}\right)$
In any situation, the number of needed test cases would be at least this; in some cases such as above we can eliminate some duplicates.
3. [Predicate testing, 1.5 pt] Consider a program implementing this predicate f, consisting of three clauses a, b, c, which are assumed to be independent of each other:

$$
(a \Rightarrow b)=c
$$

We will abstractly describe test cases and test requirements for f in terms of combinations of the values of (a, b, c).
(a) Complete the truth table below. In the f-column, fills in the value of the predicate f on the corresponding combination of the clauses; and in the last column, specifies which clauses are activated. Please stick to the given order of the combinations.

a	b	c	f	activated clauses
0	0	0	\cdots	\ldots
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Answer:

a is activated on \bar{b}
b is activated on a
c is always activated

$t c$	a	b	c	$a \Rightarrow b$	f	activated clauses
0	0	0	0	1	0	a, c
1	0	0	1	1	1	a, c
2	0	1	0	1	0	c
3	0	1	1	1	1	c
4	1	0	0	0	1	a, b, c
5	1	0	1	0	0	a, b, c
6	1	1	0	1	0	b, c
7	1	1	1	1	1	b, c

(b) Give a minimum test set that gives full clause coverage but not full predicate coverage. Answer: For example: 010, 101
(c) Give for each clause, the combinations that would give it full Restricted Active Clause Coverage. If this is not possible, use Correlated Active Clause Coverage instead for that clause. Use the table below, and try to minimize the total set of test requirements you end up with:

activated clause	combinations to for $R A C C$	else, combinations for $C A C C$
a	\ldots, \ldots	
b	\ldots	
c		

Answer:

They all can be covered by RACC.

activated clause	combinations to for RACC
a	$(0,4)$ or $(1,5)$
b	$(4,6)$ or $(5,7)$
c	$(0,1)$ or $(2,3)$ or $(4,5)$ or $(6,7)$

(d) Name which clauses can be feasibly covered with General Inactive Clause Coverage, and which of them can still be feasibly covered with Restricted Inactive Clause Coverage?

Answer:

RICC: a and b. So, they can also be covered under GICC.
c cannot be covered, since it cannot be made inactive.
4. [Predicate testing, 2 pt] Consider a predicate f, specified by the following Karnaugh map:

$c d \downarrow \backslash a b \rightarrow$	00	01	11	10
00	0	1	1	0
01	1	1	1	1
11	1	1	0	0
10	0	0	0	0

(a) Give a minimal DNF describing f and another minimal one describing $\neg f$.

Answer: For example:
$f=\bar{a} \cdot d+b . \bar{c}+\bar{c} . d$
$\bar{f}=a \cdot c+\bar{b} \cdot \bar{d}+c \cdot \bar{d}$
(b) Give a smallest possible test set that gives full Implicant Coverage (with respect to the DNFs in (a)).
Answer: Wrt above DNFs:
0101 will cover all clauses of f because it is in the intersection of them all.
1010 will cover all clauses of \bar{f} for the same reason.
(c) Give a smallest possible test set that gives full Unique True Point Coverage (with respect to the DNFs in (a)).
Answer: With respect to the DNFs in the answer of a:
$0111,1100,1001$ for the implicants of f
1111, 0000, 0110 for the implicants of \bar{f}
(d) Prove that Unique True Point and Near False Point Coverage (CUTPNFP) does not subsume Unique True Point Coverage.
Answer: Using the above DNF for f, no matter which UTPs we pick, 1010 cannot be a near false point of any clause in any implicant, because it has no neighbor on which f evaluates to 1 .
So, if we construct the DNF for \bar{f} such that it is minimal, and 1010 is a separate implicant, this particular implicant will be left uncovered.
5. [Complex Input, 1 pt] If e is a regular expression, let $[e]$ denote either an empty string or sentences you can obtain from e.
Consider a program $P(s)$ where s is a string whose syntax is specified by this regular expression:

$$
1^{*}[a|b| c](0 \mid 1)^{+} c
$$

(a, b, c above simply represent the corresponding literal characters)
(a) Give a finite state automaton M that equivalently describes the syntax.

Answer:

If an arrow has multiple labels, here it means that we can make the transition through one of the labels.
(b) We also want to do negative tests on P by giving it invalid s. An invalid string is prefix-minimal if you cannot make it shorter by dropping its last element while still being invalid. Propose an algorithm to generate all prefix-minimal invalid inputs for P of length $\leq k$.
You can assume the finite state automaton M to be described by a tuple $\left(S, s_{0}, F, E, R\right)$ where S is its set of states, $s_{0} \in S$ is its initial state, $F \subseteq S$ is its set of final states, E is the set of labels decorating the arrows, and $R: S \rightarrow E \rightarrow\{S\}$ is a function describing the arrows; $R s \alpha$ specifies the set of states connected by an arrow from s, labelled with α.
Answer: With genInvalid $s_{0} k$, where genInvalid is defined as below.

```
genInvalid \(s k=i+[\sigma+[e] \mid \quad(\sigma, t) \leftarrow \operatorname{genValid}[] s(k-1)\),
    \(e \in E\),
    \(R t e \cap F=\emptyset]\)
    where \(\quad i=\) if \(i \in F\) then [] else [[]]
genValid \(\sigma s k=\)
    if \(k \leq 0\) then \(f\)
    else \(f+\) concat \([\operatorname{gen} \operatorname{Valid}(\sigma+[e]) t(k-1) \mid e \leftarrow E, t \in R s e]\)
    where
    \(f=\mathbf{i f} s \in F[(\sigma, s)]\) else []
```

6. [Integration testing, 1.5 pt] Consider the classes Game below, that contains two method: move and activate. The first calls the latter (line 12).
```
class Game {
    int instance ;
    Collection <GameObject > [] state ;
    ...
    String move(String id, Vector v) {
        if (mangled(id))
            id = fix(id) ;
        if (v.isNegative())
                    v = v.normalize() ;
        GameObject o = activate(id) ; // **
        if (o==null) {
            o = new GameObject(v) ;
            Collection S = state[instance] ;
            S.add(o) ;
        }
        else
            o.move(v) ;
        return o
    }
    GameObject activate(String id) {
        if (state[instance] = null)
            state[instance] = new Tree();
        for (GameObject o : state[instance])
            if (o.id== id) {
                o.active = true ;
                    return o ;
                    }
        return null
    }
}
```

Suppose we want to test the integration between the method move and activate, and we want to apply the intergration testing approach as in A\&O. We will define a variable x to be defined at line number i, if the line contains an assignment of either of these forms:

$$
x=\ldots \quad, \quad x . \text { fieldname }=\ldots, \quad x[e]=\ldots
$$

Similarly, x is used at line number i, if the line contains an evaluation of an expression of either of this form: x, x.fieldname, $x[e]$.
(a) List all the coupling variables that couple move and activate. For each, specify all its coupling du-paths. Use line numbers to identify the nodes in your paths.
Answer:
id is defined move and used in activate; it has two last-def-locations, 6 and 8. The coupling paths originating from 6 are:
[6,7,9,10,12,25,26,27,28] (actually infeasible, can't go from 26 to 28)
[6,7,9,10,12,25,27,28]
[6,7,9,12,25,26,27,28] (actually infeasible, can't go from 26 to 28)
[$6,7,9,12,25,27,28]$
From 8 we have four similar coupling paths (starts from 8, rather than [6,7]):
[$8,9,10,12,25,26,27,28]$ (actually infeasible, can't go from 26 to 28)
[8,9,10,12,25,27,28]
[$8,9,12,25,26,27,28]$ (actually infeasible, can't go from 26 to 28)
[8,9,12,25,27,28]
state is defined in activate and used in move, it has two coupling paths:
$[26,27,28,30,12,14,16]$ (this is actually infeasible)
[26,27,32,12,14,16]
return has two paths $[30,12]$ and $[32,12]$
(b) Specify a minimalistic TR for each of the following coverage criteria. Express the TR in terms of a set of coupling paths from (a).
i. All-Coupling-Def Coverage

Answer: For id, one path (of the above coupling paths) that origins in 6, and one that origins in 8 ; bearing into mind that some paths are not feasible.
For state, choose one, bearing into mind that one path above in infeasible.
For return we need to include both.
ii. All-Coupling-Use Coverage

Answer: We only have one first-use of $i d$; so the two paths in (a) are also good enough for All-Coupling-Use of $i d$.
For state, choose one.
For return we of course need to include both.
iii. All-Coupling-du-Path Coverage

Answer: all the coupling paths

