Software Testing \& Verification 2013/2014 Universiteit Utrecht

2nd Jul. 2014, 13:30-16:30, BBL 001

Lecturer: Wishnu Prasetya

You are allowed to bring along the Appendix of the LN.

Part I [3pt (6×0.5)]

For each question, choose one correct answer.

1. What is the weakest pre-condition of the following statement with respect to the given post-condition?

$$
\{* ? *\} \quad \mathrm{x}:=\mathrm{x}+\mathrm{y} ; \mathrm{y}:=\mathrm{x}+3 \quad\{* \mathrm{xy}=0 ; *\}
$$

(a) $x^{2}+y^{2}+2 x y+3 x+3 y=0$
(b) $2 x^{2}+9 x+9=0$
(c) $(\mathrm{x}+\mathrm{y})(\mathrm{x}+3)=0$
(d) $(x=0) \wedge(y=0)$

Answer: Just do the substitution (in the correct order). If you the simplify the result, the answer is (a).
2. What is the weakest pre-condition of the following statement with respect to the given post-condition?

$$
\{* ? *\} \quad \mathrm{a}[0]:=\mathrm{a}[0]-\mathrm{a}[\mathrm{k}] \quad\{* \mathrm{a}[\mathrm{k}]=0 *\}
$$

(a) $a[k]=0$
(b) $\mathrm{k}=0$
(c) $(\mathrm{k}=0 \rightarrow \mathrm{a}[0]-\mathrm{a}[\mathrm{k}] \mid \mathrm{a}[\mathrm{k}])=0$
(d) $\mathrm{a}(0$ repby $(\mathrm{a}$ repby 0$)-(\mathrm{a}$ repby k$))[\mathrm{k}]=0$

Answer: c
3. Consider the following program to search for a prime number between a and b. It's body is not fully shown: body below is some statement, and e is some expression. The parameter a is passed by value, and b by copy-restore. The body is known to modify a and b.

```
find(a : int, OUT b : int) : bool { body; return e }
```

Here is the specification of the program:

$$
\begin{aligned}
& \{* 0<\mathrm{a} \leq \mathrm{b} *\} \\
& \mathrm{B}_{0}:=\mathrm{b} ; \text { find }(\mathrm{a}, \text { OUT } \mathrm{b}) \\
& \left\{*\left(\text { return }=\left(\exists \mathrm{x}: \mathrm{a} \leq \mathrm{x}<\mathrm{B}_{0}: \operatorname{isPrime}(\mathrm{x})\right)\right) \wedge(\text { return } \Rightarrow \operatorname{isPrime}(\mathrm{b})) *\right\}
\end{aligned}
$$

Which of the following specifications is a correct reduction of the above specification to the corresponding specification of the program's body?
(a)

```
{* 0<a\leqb*}
    body; return :=e
{*(return = (\existsx: a \leqx< b : isPrime(x))) ^(return m isPrime(古))*}
```

(b)

$$
\begin{aligned}
& \{* 0<\mathrm{a} \leq \mathrm{b} *\} \\
& \mathrm{B}_{0}:=\mathrm{b} ; \text { body } ; \text { return }:=e \\
& \left\{*\left(\text { return }=\left(\exists \mathrm{x}: a \leq \mathrm{x}<B_{0}: \text { isPrime }(\mathrm{x})\right)\right) \wedge\left(\text { return } \Rightarrow \text { isPrime }\left(B_{0}\right)\right) *\right\}
\end{aligned}
$$

(c) $\quad\{* 0<a \leq b *\}$

$$
\mathrm{A}_{0}, \mathrm{~B}_{0}:=\mathrm{a}, \mathrm{~b} ; \text { bod } y ; \text { return }:=e
$$

$$
\left\{*\left(\text { return }=\left(\exists \mathrm{x}: A_{0} \leq \mathrm{x}<B_{0}: \text { isPrime }(\mathrm{x})\right)\right) \wedge(\text { return } \Rightarrow \text { isPrime }(b)) *\right\}
$$

(d) $\quad\{* 0<a \leq b *\}$

$$
\begin{aligned}
& \mathrm{A}_{0}, \mathrm{~B}_{0}:=\mathrm{a}, \mathrm{~b} ; \text { body } ; \text { return }:=e \\
& \left\{*\left(\text { return }=\left(\exists \mathrm{x}: A_{0} \leq \mathrm{x}<b: \text { isPrime }(\mathrm{x})\right)\right) \wedge(\text { return } \Rightarrow \text { isPrime }(\sqrt{b})) *\right\}
\end{aligned}
$$

Answer: c
4. Which of the following proofs is correct (according the the proof system of the LN)? Read the steps carefully.
(a) PROOF
[A1:] ($\forall \mathrm{x}:: \mathrm{P} \mathrm{x})$
[A2:] Qx
[G:] $\quad(\forall \mathrm{x}:: \mathrm{P} x \wedge \mathrm{Q} \mathrm{x})$

1. $\{\forall$-elimination on A 1$\} P \mathrm{Px}$
2. \{ conjunction of 1 and A 2$\} \quad \mathrm{P} x \wedge \mathrm{Qx}$
3. $\{\forall$-introduction on 2$\} \quad(\forall \mathrm{x}:: \mathrm{P} \mathrm{x} \wedge \mathrm{Q} \mathrm{x})$

END
(b) PROOF
[A1:] $\quad a=b$
[G:] $\quad \mathrm{a} \vee(\exists \mathrm{k}:: \mathrm{x}[\mathrm{k}])=\mathrm{b} \vee(\exists \mathrm{k}:: \mathrm{x}[\mathrm{k}])$

1. $\{\vee$-introduction $\} \quad a \vee(\exists k:: x[k])$
2. $\{\vee$-introduction $\} \quad \mathrm{b} \vee(\exists \mathrm{k}:: \mathrm{x}[\mathrm{k}])$
3. $\{$ combining 1 and 2$\} \quad \mathrm{a} \vee(\exists \mathrm{k}:: \mathrm{x}[\mathrm{k}])=\mathrm{b} \vee(\exists \mathrm{k}:: \mathrm{x}[\mathrm{k}])$

END
(c) PROOF
[A1:] ($\exists \mathrm{x}:: \mathrm{P}$ x)
[A2:] Qa
[G:] (a : : P a $\wedge \mathrm{Q} \mathrm{a})$

1. $\{\exists$-elimination on A1 $\} \quad \mathrm{Pa}$
2. $\{$ conjunction of 1 and A 2$\} \quad \mathrm{Pa} \wedge \mathrm{Qa}$
3. $\{\exists$-introduction on 2$\} \quad(\exists \mathrm{a}:: \mathrm{P} a \wedge \mathrm{Q} \mathrm{a})$

END
(d) PROOF
[A1:] $\neg(\exists \mathrm{x}:: \mathrm{P} \mathrm{x})$
[A2:] Pa
[G:] false

1. $\{\exists$-introduction on A2 $\} \quad(\exists \mathrm{a}:: \mathrm{P}$ a)
2. \{ contradiction between A1 and 1 \} false

END
Answer: d
5. A statement S satisfies the following specifications:
(a) $\{* P *\} \quad S\left\{* Q_{1} *\right\}$
(b) $\left\{* Q_{2} *\right\} \quad S\{* R *\}$, where $Q_{2} \Rightarrow Q_{1}$ (note the direction!)

Which of the folowing specifications is a valid consequence of (a) and (b) above ?
(a) $\{* P *\} \quad S ; S \quad\{* R *\}$
(b) $\left\{* P \wedge Q_{2} *\right\} \quad S \quad\left\{* Q_{1} \wedge R *\right\}$
(c) $\left\{* P \vee Q_{2} *\right\} \quad S \quad\left\{* Q_{1} \wedge R *\right\}$
(d) $\{* P *\} S ; S \quad\left\{* Q_{2} \Rightarrow R *\right\}$

Answer: b

6. Consider the loop below; x is of type int and even(x$)$ is a side-effect-free function that checks if x is an even integer.

$$
\begin{aligned}
& \{* 1<\mathrm{x}<\mathrm{N} *\} \\
& \text { while } \mathrm{x}<\mathrm{N} \text { do }\{\text { if even }(\mathrm{x}) \text { then } \mathrm{x}:=2 * \mathrm{x} \text { else } \mathrm{x}:=\mathrm{x}-1\} \\
& \{* \operatorname{even}(\mathrm{x}) *\}
\end{aligned}
$$

Which of the predicates below is a correct invariant of the loop, that is enough to prove that the above specification is valid, under the partial correctness interpretation?
(a) $1<x \wedge(\exists x:: \operatorname{even}(x))$
(b) $(\operatorname{even}(x) \Rightarrow \operatorname{even}(2 x)) \wedge(\neg \operatorname{even}(x) \Rightarrow \operatorname{even}(x-1))$
(c) $1<x \leq N \wedge \operatorname{even}(x)$
(d) $x \geq N \Rightarrow \operatorname{even}(x)$

Answer: a and b won't imply the post condition; c is not implied by the pre-condition. The candidate left is d. It implies the post-condition, and can be established by the pre-condition. Calculating its wp over the loop's body gives:

$$
(\operatorname{even}(x) \Rightarrow(2 x \geq N \Rightarrow \operatorname{even}(2 x))) \wedge(\neg \operatorname{even}(x) \Rightarrow(x-1 \geq N \Rightarrow \operatorname{even}(x-1)))
$$

The first conjust is valid due to even $(2 x)$. The second conjunct is implied by the guard $x<N$, which implies that $x-1 \geq N$ cannot be true.

So, the answer is indeed (d).

Part II [7pt]

When asked to write a formal proof you need to produce one that is readable, augmented with sufficient comments to explain and convincingly defend your steps. An incomprehensible solution may lose all points.

1. [1.5 pt] Termination

Consider again this program, with the same pre-condition:

$$
\begin{aligned}
& \{* 1<\mathrm{x}<\mathrm{N} *\} \\
& \text { while } \mathrm{x}<\mathrm{N} \text { do }\{\text { if even }(\mathrm{x}) \text { then } \mathrm{x}:=2 * \mathrm{x} \text { else } \mathrm{x}:=\mathrm{x}-1\}
\end{aligned}
$$

Use the Loop Reduction Rule (the inference rule for loop as discussed in the lectures) to prove that this program terminates when executed on the given pre-condition. You only need to prove termination; we do not care in which state the program would terminate.
Answer: Using $I: 1<x$ and $m=\operatorname{even}(x) \rightarrow N-x \mid N+2$. Implicitly $N>1$ is part of the invariant, since the loop does not change the value of N.
If the guard $x<N$ is true, $N-x$ as well as $N+2$ are >0. So, m has a lower bound.

To show that m decreases, we calculate the weakest pre-condition of:

$$
1<x \wedge x<N \Rightarrow \operatorname{wp}(C:=m ; \text { body })(m<C)
$$

Calculating the wp gives:

$$
\begin{aligned}
& (\operatorname{even}(x) \Rightarrow(\operatorname{even}(2 x) \rightarrow N-2 x \mid N+2)<(\operatorname{even}(x) \rightarrow N-x \mid N+2)) \\
& \wedge \\
& (\neg \operatorname{even}(x) \Rightarrow(\operatorname{even}(x-1) \rightarrow N-2 x+2 \mid N+2)<(\operatorname{even}(x) \rightarrow N-x \mid N+2))
\end{aligned}
$$

This can be simplified to:

$$
(\operatorname{even}(x) \Rightarrow N-2 x<N-x) \wedge(\neg \operatorname{even}(x) \Rightarrow N-2 x+2<N+2)
$$

Both conjuncts are implied by the pre-conditon $1<x$.
It remains to be proven tha the invariant $i<x$ can be maintained. Calculating the wp gives us:

$$
(\operatorname{even}(x) \Rightarrow 1<2 x) \wedge(\neg \operatorname{even}(x) \Rightarrow 1<x-1)
$$

The left conjunct is obviously impied by $I: 1<x$. For the second conjunct, notice that if x is odd, and $1<x$, then $x \geq 3$. So, $x-1>1$.
Done.
2. [3 pt] Loop

Here is a program to check if all elements of an array a[0..N) are the same.

```
{* N >0 *} // pre-condition
    i := 1 ;
    uniform:= true ;
    while i<N do {
        uniform := uniform ^(a[i]=a[0]) ;
        i := i+1
    } ;
```

$\{*$ uniform $=(\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{N}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0]) \quad *\} \quad / /$ post-condition

Give a formal proof that the program is correct. You can skip the termination proof.
Answer: Grading: 0.5 pt Pinit, $2 \mathrm{pt} \mathrm{PIC}, 0.5 \mathrm{pt}$ EC. No separate point for the invariant; wrong invariant will show up in the proofs anyway.
Bad proof styles (BPS): deduction up to 1 pt .
Incorrect inv: 0.3 pt to maximum.
We'll this this invariant I :

$$
1 \leq i \leq N \wedge(u=(\forall k: 0 \leq k<i: a[k]=a[0]))
$$

Here, I will only give a sketch of the proof. PEC is quite trivial. For Pinit, we have to prove:

$$
N>0 \Rightarrow \mathrm{wp}(i:=1 ; u:=\text { true }) I
$$

Calculating the wp gives:

$$
1 \leq 1 \leq N \wedge(\text { true }=(\forall k: 0 \leq k<1: a[k]=a[0]))
$$

which is not difficult to prove.
For PIC we have to prove:

$$
I \wedge i<N \Rightarrow \operatorname{wp}(u:=u \wedge(a[i]=a[0]) ; i:=i+1) I
$$

Calculating the wp gives:

$$
1 \leq i+1 \leq N \wedge(u \wedge(a[i]=a[0])=(\forall k: 0 \leq k<i+1: a[k]=a[0]))
$$

The first conjuct is not difficult to prove. For the second conjunct:

```
PROOF EQUATIONAL
\((\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{i}+1: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])\)
\(=\{\) domain merge, \(0 \leq i\}\)
\((\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{i} \vee(\mathrm{k}=\mathrm{i}): \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])\)
\(=\{\) domain split \(\}\)
\((\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{i}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0]) \wedge(\forall \mathrm{k}: \mathrm{k}=\mathrm{i}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])\)
\(=\{I\}\)
\(\mathrm{u} \wedge(\forall \mathrm{k}: \mathrm{k}=\mathrm{i}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])\)
\(=\{\) quatification over singleton \(\}\)
\(\mathrm{u} \wedge(\mathrm{a}[\mathrm{i}]=\mathrm{a}[0])\)
END
```


3. [1.5 pt] Adding a break

The program from No. 2 can be improved by letting the loop to break when $a[i-1] \neq a[0]:$

```
{* N > 0 *} // pre-condition
    i := 1 ;
    uniform:= true ;
    while i<N ^ a[i-1]=a[0] do {
        uniform := uniform ^ (a[i]=a[0]) ;
        i := i+1
    } ;
{* uniform = ( }\forall\textrm{k}:0\leq\textrm{k}<\textrm{N}:\textrm{a}[\textrm{k}]=\textrm{a}[0]) *} // post-condition
```

Give a new formal proof of the loop Exit Condition, that will prove that using the same invariant as in No. 2, the version above will also terminate in the specified post-condition above.
(You only need to give a new PEC proof)
Answer:
PROOF PEC
[A1:] $\mathrm{u}=(\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{i}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])$
[A2:] $1 \leq \mathrm{i} \leq \mathrm{N}$
[A4:] $i \geq N \vee a[i-1] \neq a[0]$
$[\mathrm{G}:] \mathrm{u}=(\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{N}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])$

1. $\{$ this was already proven in No. 2$\} \mathrm{i} \geq \mathrm{N} \Rightarrow \mathrm{G}$
2. $\{$ see subproof below $\}(\mathrm{a}[\mathrm{i}-1] \neq \mathrm{a}[0]) \Rightarrow \mathrm{G}$

PROOF sub
$[\mathrm{A} 1:] \mathrm{a}[\mathrm{i}-1] \neq \mathrm{a}[0]$
[G:] same as PEC.G

1. $\{$ follows from PEC.A2 $\} 0 \leq i-1<i$
2. $\{$ follows from PEC.A2 \} $0 \leq i-1<N$
3. $\{\exists$-intro on 1 and A 1$\}(\exists \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{i}: \mathrm{a}[\mathrm{k}] \neq \mathrm{a}[0])$
4. $\{\exists$-intro on 2 and A 1$\}(\exists \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{N}: \mathrm{a}[\mathrm{k}] \neq \mathrm{a}[0])$
5. $\{$ negation of \forall on 3$\} \neg(\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{i}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])$
6. $\{$ negation of \forall on 4$\} \neg(\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{N}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])$
7. $\{$ rewrite 5 with PEC.A1 \} $\neg \mathrm{u}$
8. $\{5$ and 7$\} \neg \mathrm{u}=\neg(\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{N}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])$
9. $\{$ follows form 8$\} \mathrm{u}=(\forall \mathrm{k}: 0 \leq \mathrm{k}<\mathrm{N}: \mathrm{a}[\mathrm{k}]=\mathrm{a}[0])$

END

END

4. [1 pt$]$ Program call

Consider the following specification of the program P :

```
{* y>0 *} Y := y; P(x:int, OUT y:int) {* (return+y)/Y > x *}
```

Consider this call to P :

$$
\{* \mathrm{k}>0 *\} \quad \mathrm{r}:=\mathrm{P}(\mathrm{k}-2, \mathrm{k}) \quad\{* \mathrm{r}+\mathrm{k}>0 *\}
$$

To prove the correctness of the call, we first transform the call to the following equivalent statement:

```
{* k>0 *}
{* (1) ? *} @x := k-2 ;
{* (2) ?*} @y := k ;
{* (3) ?*} r := P(@x,@y) ;
{* (4) ?*} k := @y ;
{* r+k>0 *}
```

(a) Fill in the intermediate predicates (1)..(4) above. Calculate them using the weakest-precondition function, and for (3) use the Black Box reduction rule for program call.
Just give the answers; you do not have to show the calculation.
Answer: For the purpose of applying the Black Box rule, you can treat the special variable return as if it is an implicit OUT-parameter. So, it is as if P has this header: $\mathrm{P}(\mathrm{x}$, OUT y , OUT return), and the call $r:=P(@ x, @ y)$ can be seen as $P(@ x, @ y, r)$.

$$
\begin{aligned}
& 4 \text { : } r+@ y>0 \\
& 3: @ y>0 \wedge\left(\left(r^{\prime}+y^{\prime}\right) / @ y>@ x \Rightarrow r^{\prime}+y^{\prime}>0\right) \\
& 2: k>0 \wedge\left(\left(r^{\prime}+y^{\prime}\right) / k>@ x \Rightarrow r^{\prime}+y^{\prime}>0\right) \\
& 1: k>0 \wedge\left(\left(r^{\prime}+y^{\prime}\right) / k>k-2 \Rightarrow r^{\prime}+y^{\prime}>0\right)
\end{aligned}
$$

(b) Based on your calculation above, is the call correct? Motivate your answer.
Answer: No. The implication in the second conjunct is not implied by the given pre-condition. For example if both r^{\prime} and y^{\prime} are 0 , then $r^{\prime}+y^{\prime}$ is not >0.

