Exam 2 Software Testing \& Verification Th. 29th June 2017, 8:30-10:30, EDUC-ALFA

Lecturer: Wishnu Prasetya

You are allowed to bring along Appendix-A of the LN.

Part I [4pt (8×0.5)]

For each question, choose one correct answer.

1. The specification $\{* Q *\} S\{*$ true $*\}$ is known to be valid under total correctness. Which of the following conclusions is correct?
(a) S will terminate when executed in any state.
(b) If the implication $P \Rightarrow Q$ is valid, then S will terminate when executed in any state satisfying P.
(c) The specification $\{* Q *\} S\{* Q \Rightarrow R *\}$ is also valid under partial correctness.
(d) The specification $\{* P \Rightarrow Q *\} S\{*$ true $*\}$ is also valid under total correctness.
2. Which of the following statements about weakest pre-condition is correct?
(a) $\{* \mathbf{w p} S Q *\} S\{* Q *\}$ is always a valid specification.
(b) $\{* P \Rightarrow(\boldsymbol{w p} S Q) *\} S\{* Q *\}$ is always a valid specification.
(c) $\{* Q *\} S\{* \mathbf{w p} S Q *\}$ is always a valid specification.
(d) $\{* P *\} S\{* Q *\}$ is valid if and only if the predicate wp $S(P \Rightarrow Q)$ is valid.
3. What is the weakest pre-condition of the following statement with respect to the given post-condition?

$$
\{* ? *\} \quad\{\text { if } \mathrm{x}=\mathrm{y} \text { then } \mathrm{x}:=\mathrm{x}+1 \text { else skip }\} ; \mathrm{x}:=\mathrm{x}+\mathrm{y} \quad\{* \mathrm{x}=\mathrm{y} *\}
$$

(a) $((x=y) \wedge x=-1) \vee((x \neq y) \wedge x=0)$
(b) $x=-1 \wedge y=-1$
(c) $(x=y) \rightarrow x+1+x+y=y \mid x+y=y$
(d) $(x=y \Rightarrow x+1+y=y) \vee(x \neq y \Rightarrow x+y=y)$
4. What is the weakest pre-condition of the following statement with respect to the given post-condition?

$$
\{* ? *\} \quad \mathrm{a}[\mathrm{k}]:=\mathrm{a}[0]+\mathrm{a}[\mathrm{k}] \quad\{* \mathrm{a}[0]=\mathrm{a}[\mathrm{k}] *\}
$$

(a) $\mathrm{a}[0]=\mathrm{a}[0]+\mathrm{a}[\mathrm{k}]$
(b) $\mathrm{a}(0$ repby $\mathrm{a}[0]+\mathrm{a}[\mathrm{k}])[0]=\mathrm{a}[0]+\mathrm{a}[\mathrm{k}]$
(c) $\mathrm{a}(\mathrm{k}$ repby $\mathrm{a}[0]+\mathrm{a}[\mathrm{k}])[0]=\mathrm{a}[0]+\mathrm{a}[\mathrm{k}]$
(d) $\mathrm{a}[0]$ repby $\mathrm{a}[0]+\mathrm{a}[\mathrm{k}]=\mathrm{a}[\mathrm{k}]$ repby $\mathrm{a}[0]+\mathrm{a}[\mathrm{k}]$
5. Which of the following proofs is correct (according the the proof system of the LN)? Read the steps carefully.
(a) PROOF
[A1:] $(\forall \mathrm{x}: \mathrm{Px}: \mathrm{Q} x \vee \mathrm{Rx})$
[A2:] Pa
[G:] $\quad \mathrm{Pa} \wedge \mathrm{Qa}$

1. $\{\forall$-elimination on A1 using A 2$\} \quad \mathrm{Q} a \vee \mathrm{Ra}$
2. $\{\vee$ elimination on 1$\} \quad \mathrm{Q}$ a
3. $\{$ conjunction of A 2 and 2$\} \quad \mathrm{Pa} \wedge \mathrm{Q}$ a

END
(b) PROOF
[A1:] ($\exists \mathrm{x}: \mathrm{Px}: \mathrm{Qx})$
[G:] ($\forall \mathrm{x}:: \mathrm{P} x \wedge \mathrm{Q} \mathrm{x})$

1. $\{\exists$-elimination on A1 $\} \quad[\operatorname{SOME} x] P \mathrm{x} \wedge \mathrm{Qx}$
2. $\{\forall$-introduction on 1$\}(\forall \mathrm{x}:: \mathrm{P} \mathrm{x} \wedge \mathrm{Q} \mathrm{x})$

END
(c) PROOF
[A1:] $\neg(\forall \mathrm{x}:: \mathrm{P} \mathrm{x})$
[A2:] $\neg \mathrm{Pa} \Rightarrow \mathrm{Qa}$
[G:] Qa

1. $\{\forall$-elimination on A1 $\} \quad \neg \mathrm{Pa}$
2. \{ Modus Ponens on A2 using 1 \} Q a

END
(d) PROOF
[A1:] $\neg(\exists \mathrm{x}:: \mathrm{P}$ x)
[A2:] PaVQa
[G:] Qa

1. \{ rewrite A1 with negate- \exists \} $(\forall \mathrm{x}:: \neg \mathrm{P} \mathrm{x})$
2. $\{\forall$-elimination on 1$\} \quad \neg \mathrm{Pa}$
3. $\{$ rewriting A2 with 2$\} \quad$ false $\vee Q a$
4. $\{$ simplifying 3 \} Q a

END
6. For integers m and x, let $m \mid x$ mean that m is a divisor of x. This means that there exists another integer k such that $x=k m$. Consider the following loop; all variables are of type int:

$$
\begin{aligned}
& \{* \mathrm{x}=1024 \wedge \mathrm{y}>0 \wedge \mathrm{~m}|\mathrm{x} \wedge \mathrm{~m}| \mathrm{y} *\} \\
& \text { while } \mathrm{x}>\mathrm{y} \text { do } \mathrm{x}:=\mathrm{x}-\mathrm{y} \\
& \{* \mathrm{~m} \mid \mathrm{x} *\}
\end{aligned}
$$

Which of the predicates below is a consistent invariant of the loop, and enough to prove that the above specification is valid?
(a) $y \leq x \leq 1024$
(b) $m|x \Rightarrow m| y$
(c) $y>0 \wedge m \mid x$
(d) $y>0 \wedge m|x \wedge m| y$
7. Consider the following program, with the given specification.

$$
\begin{aligned}
& \{* \mathrm{x}=0 \wedge \mathrm{i}=0 \wedge(\forall \mathrm{k}:: \mathrm{a}[\mathrm{k}]>0) *\} \\
& \text { while } \mathrm{x}<100 \text { do }\{\mathrm{x}:=\mathrm{x}+\mathrm{a}[\mathrm{i}] ; \mathrm{i}:=\mathrm{i}+1\} \\
& \{* \text { true } *\}
\end{aligned}
$$

Which pair of invariant I and termination metric m is consistent and good enough to prove that the program above terminates?
(a) invariant: $(\forall \mathrm{k}:: \mathrm{a}[\mathrm{k}]>0)$, termination metric: $100-\mathrm{i}$
(b) invariant: $(\forall \mathrm{k}:: \mathrm{a}[\mathrm{k}]>0)$, termination metric: $100-\mathrm{x}$
(c) invariant: $0 \leq \mathrm{i} \leq 100$, termination metric: $100-\mathrm{i}$
(d) invariant: $\mathrm{x}=\operatorname{SUM}(\mathrm{a}[0 . . \mathrm{i})$), termination metric: $\mathrm{x}+\mathrm{i}$
8. Consider the function val defined below. Given a list of digits, e.g. as in val $0[3,4,5]$, it will calculate the integer value of the digits if they would be the string " 345 ". In this case the answer is the integer 345. Notice that the function is tail recursive.

$$
\begin{array}{ll}
\operatorname{val} v[] & =v \\
\operatorname{val} v(x: z) & =\operatorname{val}(10 * v+x) z
\end{array}
$$

Below is an imperative implementation of the function. The specification is given.

```
{* true *}
v := 0; t:= s;
while t }\not=[] do {\
    v:= 10*v + head(t);
    t:= tail(t)
}
{*v=val 0s *}
```

Which of the following is a consistent and good enough invariant to prove the correctness of the above specification?
(a) $v=\operatorname{val} 0 t$
(b) val $v t=\operatorname{val} v s$
(c) val $v t=\operatorname{val} 0 s$
(d) $v=\operatorname{sum}\left[s_{i} * 10^{i} \mid 0 \leq i<\right.$ length $\left.(s)\right]$

Part II [6pt]

1. [5 pt] Loop

Consider the following program and its specification. The program checks if the array segment $\mathrm{a}[0 . . \mathrm{N})]$ is sorted (in increasing order).

```
\(\{* \quad 0<\mathrm{N} \quad *\} \quad / /\) pre-condition
    p := 1 ;
    k := 1 ;
    ok := true ;
    while \(\mathrm{k} \neq \mathrm{N} \wedge\) ok do \{
        ok : \(=\mathrm{ok} \wedge(\mathrm{a}[\mathrm{k}-1]<\mathrm{a}[\mathrm{k}])\);
        \(\mathrm{k}:=\mathrm{k}+1\);
    \} ;
\(\{*\) ok \(=(\forall \mathrm{j}: 0<\mathrm{j}<\mathrm{N}: \mathrm{a}[\mathrm{j}-1]<\mathrm{a}[\mathrm{j}]) \quad *\} \quad / /\) post-condition
```

Give a formal proof that the program satisfies its specification, under partial correctness.

- Please mention what your chosen invariant is.
- Every step in your proof should include a justification (the hint/comment part).
- Steps involving quatifiers should be done in small steps: each step should refer to a proof rule or a theorem in Appendix A. You can additionally use this theorem:

$$
\vdash P \Rightarrow(P=\text { true })
$$

- You don't have to show the wp calculation.

2. [0.5 pt] Program call

Consider the following specification of the program P; all parameters are of type Float.

$$
\{* \mathrm{c} \neq 0 *\} \quad \mathrm{C}:=\mathrm{c} ; \mathrm{P}\left(\mathrm{a}, \mathrm{~b}, \text { OUT c) }\left\{* \mathrm{ac}^{2}>\mathrm{bC} *\right\}\right.
$$

Consider the following statement, that contains a call to P:

$$
\{* \mathrm{c}=1 *\} \quad \mathrm{P}(\mathrm{c}, \mathrm{c}, \mathrm{c}) ; \mathrm{c}:=\mathrm{c}^{2} \quad\{* \mathrm{c}>1 *\}
$$

Consider the following transformation of the statement above; it is equivalent:

$$
\left.\begin{array}{l}
\{* \mathrm{c}=1 *\} \\
\{*(1) ? *\} \\
\\
\\
\begin{cases}\text { @a }:=\mathrm{c} ; \\
\text { @b }:=\mathrm{c} ; \\
\text { @c }:=\mathrm{c} ; \\
\{*(2) ? *\} & \mathrm{P}(@ \mathrm{a}, @ \mathrm{~b}, @ \mathrm{c}) ;\end{cases} \\
\{*(3) ? *\} \\
\mathrm{c}:=@ \mathrm{c} ; \\
\mathrm{c}:=\mathrm{c}^{2}
\end{array}\right] \begin{aligned}
& \\
& \{* \mathrm{c}>1 *\}
\end{aligned}
$$

Calculate intermediate predicates (1) ... (3) above, such that from the corresponding positions they guarantee the final post-condition $c>1$. Use the Black Box reduction rule for program call to calculate (2), and standard wp calculation for the others.

Just give the answers; you do not have to show the calculation. The specification is valid; you can use this fact as a check in your own calculation.
3. [0.5 pt] Termination proof Consider the following program, with the given specification.

```
\(\{* x \in\{0,1\} \wedge \mathrm{y}=2 *\}\)
while \(\mathrm{y}<100\) do \(\{\)
    if odd \((\mathrm{x})\) then \(\{\mathrm{x}:=\mathrm{x}-1 ; \mathrm{y}:=0\}\)
    else \(\mathrm{y}:=\mathrm{y}+1\)
    \}
\(\{*\) true \(*\}\)
```

Prove that the above program terminates. Use the proof method from the Lecture Notes. You can skip the proof of the exit condition (EC) since the post-condition (true) poses no constraint.

