
Exam Software Testing & Verification 2020/2021
Th. 27th May 2021, 08.45–10.45

Write your solution digitally, and upload it through Blackboard. When a diagram is asked, you
can draw it on paper and upload a photo of it. Expected format: pdf/txt/md, and usual standard
format for photos.

1 Part I (6pt)

1. Two developers have to test a program P , in particular a path σ with length k>0 in P ’s
Control Flow Graph.

Developer A wrote a test t that covers σ through detour.

Developer B then proposes to add another test so that σ is also covered with side-trip.

Question: is developer B’s proposal reasonable? Give an argument to support your answer.

2. Consider the program scan shown below —what it exactly does is not so important here. Its
CFG is also shown. Numbers in the program’s comments refer to the corresponding node-ids
in the CFG.

The programmer wants to test this program, and considers to aim for full node coverage.
Given the complex control flow of the program this does not seem to be a good idea.

Describe one critical behavior (of the program) we might miss if we go along with the
programmer’s proposal.

1 string scan (int [] dna) {
2 int i=0 ; /∗0∗/
3 int sum=0 ; /∗0∗/
4 while (i<dna . Length) { /∗1∗/
5 sum += dna [i] ; /∗2∗/
6 switch (sum % 20) { /∗2∗/
7 /∗2∗/ case 0 : p r i n t (sum) ; /∗6∗/
8 /∗3∗/ case 19 : return ”cov” ; /∗8∗/
9 /∗4∗/ case 1 : break

10 /∗5∗/ default : ; /∗5∗/
11 }
12 i++ ; /∗5∗/
13 }
14 return ” c l e a r ” /∗7∗/
15 }

3. Consider again the Control Flow Graph (CFG) of the program Scan() in the question No.
2. The starting node is 0. The exit nodes are marked red.

How many prime paths pass through the edge 2→3 ? Explain how you come up with
this answer. Try to use your insight to solve this problem, rather than just brute forcely
simulating the Prime Path finding algorithm fram Ammann & Offutt’s book.

1

4. Consider the program below. Given an array a and a value rho which is an element of a,
the program returns an index of a pointing to this rho in a.

int IndexOf(int[] a, int rho)

Give a formal specification of this program in terms of pre- and post-conditions.

5. Consider the program below. Given an array a whose elements are sorted ascendingly, the
program checks whether the array contains duplicate elements. E.g. [1, 2, 2, 3] is such an
array. The program should return true on this example.

bool HasFlatRegion(int[] a)

Give a formal specification of this program in terms of pre- and post-conditions.

6. Consider an app to diagnose if a person is ill. The app poses ten questions Q1...Q10 to the
user, e.g. whether the user has fever. All questions are binary (the answer is a yes or no).
Additionally, the diagnosis also depends on these factors:

(a) The user gender.

(b) The user age.

(c) The user’s proximity with respect to other users of this app in the last two weeks.
By the ’proximity’ of two users we mean how close they are in terms of the physical
distance between them.

The app is new, so its developer wants to test it. Propose how to apply paritition-based
testing to the app:

(a) What should we take as the characteristics?

(b) What should be the blocks?

(c) Which coverage criterion should we use? Mention one strength and one weakness of
your proposal.

7. Consider a program tax(x, y, z) that we want to test. The domains of x, y, and z are
partitioned as follows, with k > 2:

x is partitioned into k blocks: X1,X2, ..., Xk

y is partitioned into two blocks: Y1,Y2

z is partitioned into k blocks: Z1,Z2, ..., Zk

The red/embolden blocks can combine to affect the behavior of the program tax(). So the
developer wrote the following test set that would exercise all pairs between these embolden
blocks:

tb0 : (X1, Y1, Z1)
tb1 : (X1, Y2, Z2)
tb2 : (X2, Y1, Z2)
tb3 : (X2, Y2, Z1)

(a) Give a reasonable proposal on how to cover the remaining blocks.

(b) What is the minimum number of tests that would be needed in your proposal above.

2

(c) Mention one strength and one weakness of your proposal.

8. Consider the program below that calculates the sum of all positive elements of an array a.
To test this program we will focus on its dataflows with respect to the variables aggr and a.
The program’s Control Flow Graph (CFG) is shown next to it, decorated by the defs and
uses of aggr and a. The node-numbers correspond to the line numbers of the insrtuctions
they represent. Node-1 is the starting node in this CFG. The exit nodes are marked red.
Nodes with a def to aggr are marked yellow, and one with a def to a is marked blue.

1 int sumA(int aggr , int [] a) {
2 i f (a == null)
3 return aggr ;
4 i f (a . Length==0)
5 return aggr ;
6 int k=0 ;
7 while (k<A. Length) {
8 k++ ;
9 i f (a [k−1]<=0)

10 continue ;
11 else
12 aggr = aggr + a [k−1] ;
13 }
14 return aggr ;
15 }

We want to apply data-flow based testing to this program. Your task:

(a) List all the du-paths of aggr and the du-paths of a. Separate these two groups.

(b) Give a recommendation: which data-flow based coverage should we strive for to test
the above program. It should be a reasoanble proposal, and give an argument why your
proposal is reasonable.

(c) Which of the paths listed in (a) should be included as the your Test Requirement (TR)
for your recommendation in (b) ? The TR should be minimum in size.

3

2 Part II (4 pt)

1. (1.2pt) A programmer wrote a program with a series of N number while-loops. The structure
is shown below. All statements Si and Ti are just simple assignments, and let’s assume the
program does not throw any exception.

1 P (. . .) {
2 while (e1){
3 S1

4 i f (f1) break ;
5 T1
6 }
7 while (e2){
8 S2

9 i f (f2) break ;
10 T2
11 }
12 . . . // more while-loops with the same structure as above; total there are N such loops

13 }

Because the program looks complex. programmer A considers to test the program thoroughly
by requiring full prime path coverage, but would like to know first how many prime paths
he/she has to cover for different N . The control flow graphs (CFGs) of the program for
several N are shown below. The starting node is the node e1, the exit node is end.

Questions/tasks:

(a) There are 5 prime paths for N=1. How many cyclic and non-cycic prime paths are
there for N=2. Explain how you get your numbers.

(b) Programmer B proposes to restrict the testing to cover only all consecutive/connected
edges up to 3 consecutive edges. An example of such consecutive edges is:

edge (S1; f1)→ T1 followed by edge T1 → e1 followed by edge e1 → end

For N=1 programmer B’s proposal is actually just as strong as programmerA’s pro-
posal, because all prime paths for N=1 consist of 3 edges.

For higher N , describe a scenario that is guaranteed to be covered if we insist on full
prime path coverage, but might be missed if we follow programmer’s B’s proposal.

(c) (hard) Give a general formula for the total number of prime paths in P () for a given
N ≥ 1.

(d) If the breaks except the last one are actually infeasible (so, in the above picture, all
the blue edges are unfeasible), what is the smallest number of tests needed to cover
all remaining prime paths?

Suppose U is such a minimal test set. Mention one weakness of literally adopting this
U as our test set.

4

2. (1.2pt) The code below shows a procedure/method Send(uids) to send an emails to members
of the Utrecht University. The procedure takes an array uids containing all user-ids of these
members. The procedure uses another procedure called mkAddress that replace every user-id
in uids with its email address. Some special cases such as when the user is the admin, and
when the user-id turns out to be empty are also dealth with. The admin should not be
mailed, and an empty user-id should be ignored.

The control flow graphs (CFGs) of each procedure are also shown, along with the defs and
uses of the coupling variables between these two procedures. The numbers in the CFGs refer
to the instructions in the corresponding line numbers in the code.

1 module A {
2 . . .
3 void Send (St r ing [] u ids) {
4 i f (u ids==null | | uids . Length==0)
5 return ;
6 i f (u ids [0]==”admin”)
7 uids [0] = ”” ;
8 int i=0 ; int N=uids . Length ;
9 int code = mkAddresses(u ids) ;

10 while (i<N && code>0) {
11 sendEmailTo (u ids [i]) ;
12 i++ ;
13 }
14 }}
15

16 module B {
17 int mkAddress (S t r ing [] u ids) {
18 i f (u ids . Length<=1) F
19 return −1 ;
20 int i=0 ; int count=0 ;
21 while (i<=a . Length) {
22 i f (u ids [i]==””)
23 { i++ ; continue ; }
24 uids [i] = u ids [i]+”@uu . n l ” ;
25 i++ ; count++ ;
26 }
27 i f (count>1) F
28 return count ;
29 return 1 ;
30 }}

We treat the return statements in mkAddress() as assignments to a special variable mkAddress.retval.
If a node in the CFGs has both a use and a def of the same variable, the use occurs in the
corresponding code fragment before the def.

Your tasks:

(a) There are two coupling variables in the above setup: uids and mkAddress.retval. List
the coupling du-paths for each of these variables. Group the paths per variable using a
table as shown below:

5

Coupling var coupling du-paths
uids ... list here the counpling du-paths of uids

mkAddress.retval/code ...list here the counpling du-paths of mkAddress’s return value.

(b) After unit-testing Send() in isolation (by mocking mkAddress()), porgrammer A now
wants to test it again, but this time using the real mkAddress(). He applies integration
testing, aiming at full All Couping-Defs Coverage (ACDC).

Programmer B has a different opinion, and wants to have full All Coupling-Uses Cov-
erage (ACUC).

• Explain the difference between ACUC and ACDC.

• Then, specify a smallest subset of all the du-paths from (a) that should be covered
to get full ACDC.

• And the same for ACUC: give a smallest subset of all the du-paths from (a) that
should be covered to get full ACUC.

(c) The program mkAddress() has two errors (marked with bombs).

The condition in line 18 will cause Send() to supress sending an email if uids e.g. a
singleton [”harry”].

The condition in line 27 should use < rather than >. The error would cause Send() to
still iterate over uids even if it consists of only empty user-ids, e.g. [””, ””, ””].

Which of the coupling paths in (a) are necessary in order to trigger and observe these
errors? We assume the testers observe errors by observing the behavior of Send().

Motivate your answers.

6

3. (0.8pt) Consider the method SetNewPrice() in the class ShopManager shown below. The
method gets the item currently selected by the user, to apply a new price to it, if the new
price is lower that its current price.

The selected item is of type Item, though it may also be a subclass of it, namely SaleItem.
The class Item has a getter and a setter for its price, but note that these are overriden by
SaleItem.

1 class ShopManager {
2 . . .
3 void SetNewPrice (int p) {
4 Item item = GetSelectedItem () ;
5 int oldp = item . GetPrice () ;
6 i f (oldp > p)
7 item . Se tPr i c e (p) ;
8 Console . Pr in t ln (oldp) ;
9 int newp = item . GetPrice () ;

10 Console . Pr in t ln (newp) ;
11 }
12 }
13 class Item {
14 string name ;
15 int p r i c e ;
16 . . .
17 public virtual void SetPr i c e (int p) { p r i c e = p ; }
18 public virtual int GetPrice () { return p r i c e ; }
19 }
20

21 class SaleItem : Item {
22 int di scount ;
23 public void SetPr i c e (int p) { p r i c e = p ; d i s count = 2 ;}
24 public int GetPrice () { return Max(1 , p r i c e − di scount) ; }
25 . . .
26 }

(a) The method ShopManager() contains one coupling sequence over the variable item.

Which pair of locations form this coupling sequence? Why is this pair form a coupling
sequence?

(b) List all binding triples of the coupling sequence in (a). Assume that we only have one
subclass of Item, namely SaleItem.

(c) Consider the following binding triples that appear inside some method foo() that calls
methods of A1 (or A2). The corresponding coupling paths are also given. In all cases,
the context variable is o. All named paths are distinct.

binding triples
coupling se-
quence

runtime
type of
context-var

coupling variables coupling paths

C1 A1 {o.name, o.age} σ1 for o.name and σ2 for o.age
C2 A1 {o.name, o.age} τ1 for o.name and τ2 for o.age
C2 A2 {o.name} τ3

Explain the difference between requiring All-Poly-Classes (APC) coverage versus All-
Coupling-Defs-Uses (ACDU) in the above example. You can explain the difference in
terms of which cases would be covered by each, and which ones could be missed.

7

4. (0.8pt) Consider a program Q(s) that takes a string s as a parameter. The string is an
HTML-like fragment describing a logical formula. The syntax is described by the context
free grammar shown below. The rightmost column lists the names of the rules.

S → ”true” (RS1)
S → V ar (RS2)
S → Math (RS3)
Math → ”〈any〉” V ar ”:” S ”&&” S ”〈/any〉” (RM)
V ar → ”x” (RV)

S is the start symbol. Quoted symbols (red) are terminals.

If we ignore the oracle part, a test for Q consists essentially of just an instance of s.

(a) Give a single test for Q (so, an instance of s) that would cover all terminals, all non-
terminals, and all production rules of the above grammar. Show the derivation tree of
this instance of s as a proof of the requested coverage.

(b) Give N tests, 2≤N≤3, for Q (so, N instances of s) that would give full Pair-wise Rule
Coverage. Explain why your test set fulfills this requirement.

(c) Does your test set from (b) also give full Each Rule-Rule Coverage (ERRC)? If you
think that is so, explain why. Else, mention two requirements of ERRC which are not
met by your tests in (b).

8

