Mastermath Algebraic Geometry 1, Retake 2019/03/05

Bas Edixhoven and Martijn Kool

- Time allowed: 3 hours.
- There are 3 exercises, and 100 points.
- You may quote results from the lecture notes without proof. If you wish to use results from the course exercises then you are expected to re-prove them.
- You may use previous parts of an exercise also when you have not proved them.
- Pen and paper only allowed no books, notes, calculators etc.
- Throughout, k denotes an algebraically closed field, not necessarily of characteristic zero, and all varieties we consider are varieties over k.
- 1. (a) Let X be an affine variety and $P, Q \in X$ distinct points. Show that there exist regular functions $f, g: X \to k$ such that f(P) = g(Q) = 0 and f(R) + g(R) = 1 for all $R \in X$ (7 points).
 - (b) Let \mathcal{F} be a sheaf of abelian groups on a topological space X and let $P \in X$. Give the definition of the stalk \mathcal{F}_P (7 points).
 - (c) Let X be an irreducible variety and $P \in X$. Show that there exists a well-defined injective ring homomorphism $\mathcal{O}_{X,P} \hookrightarrow K(X)$ (7 points).
- 2. An irreducible conic is an projective variety of the form $C := Z_{\text{proj}}(f) \subset \mathbb{P}^2$, where $f \in k[x, y, z]$ is irreducible, non-zero, and homogeneous of degree 2.
 - (a) Let $C \subset \mathbb{P}^2$ be an irreducible conic. Show that there exists an automorphism $T \colon \mathbb{P}^2 \to \mathbb{P}^2$, such that $T(C) = Z_{\text{proj}}(xy + xz + yz)$. *Hint: show that there are three points* $P, Q, R \in C$ *which are not collinear.* (12 points)
 - (b) Prove that $\varphi \colon \mathbb{P}^1 \to \mathbb{P}^2$, $\varphi(a:b) = (a^2:b^2:ab)$ is a well-defined morphism (8 points).
 - (c) Show that the image of φ is an irreducible conic and φ is an isomorphism onto its image (8 points).
 - (d) Prove that any irreducible conic $C \subset \mathbb{P}^2$ is smooth (8 points).
 - (e) Let $k = \mathbb{C}$. Given any irreducible conic $C \subset \mathbb{P}^2$ such that $(0:0:1) \notin C$. Consider the morphism $f: C \to \mathbb{P}^1$, $(x:y:z) \to (x:y)$. Using only the fact that \mathbb{P}^1 has genus 0 and the previous parts of this exercise, show that the Riemann-Hurwitz formula holds for the analytification of f. *Hint: Show that* C *is defined by* $z^2 + a(x, y)z + b(x, y)$ with a homogeneous of degree 1 and b homogeneous of degree 2. Then show that the discriminant $\Delta = a^2 4b$ is not the zero polynomial and has two distinct roots on \mathbb{P}^1 . (12 points)
- 3. In this exercise $k = \mathbb{C}$. Let $C \subset \mathbb{P}^1 \times \mathbb{P}^1$ be the zero set of the bi-homogeneous polynomial $f(x_0, x_1, y_0, y_1) = (x_0^3 + x_1^3)y_0^2 + (x_0^3 x_1^3)y_1^2$. Consider the morphism $\varphi \colon C \to \mathbb{P}^1$, which sends $((a_0 : a_1), (b_0 : b_1))$ to $(a_0 : a_1)$.
 - (a) State the definition of smoothness of a variety at a point (7 points).
 - (b) Prove that C is a smooth curve (8 points).
 - (c) Determine the degree of φ and use Riemann-Hurwitz to show that the genus of C is 2 (8 points).
 - (d) Let $P \in C$. Show that any divisor D on C satisfies $\deg D \leq \dim H^0(C, \mathcal{O}_C(D+P))$ (8 points).