Mastermath Algebraic Geometry 1, Retake 2019/03/05

Bas Edixhoven and Martijn Kool

- Time allowed: 3 hours.
- There are 3 exercises, and 100 points.
- You may quote results from the lecture notes without proof. If you wish to use results from the course exercises then you are expected to re-prove them.
- You may use previous parts of an exercise also when you have not proved them.
- Pen and paper only allowed - no books, notes, calculators etc.
- Throughout, k denotes an algebraically closed field, not necessarily of characteristic zero, and all varieties we consider are varieties over k.

1. (a) Let X be an affine variety and $P, Q \in X$ distinct points. Show that there exist regular functions $f, g: X \rightarrow k$ such that $f(P)=g(Q)=0$ and $f(R)+g(R)=1$ for all $R \in X$ (7 points).
(b) Let \mathcal{F} be a sheaf of abelian groups on a topological space X and let $P \in X$. Give the definition of the stalk \mathcal{F}_{P} (7 points).
(c) Let X be an irreducible variety and $P \in X$. Show that there exists a well-defined injective ring homomorphism $\mathcal{O}_{X, P} \hookrightarrow K(X)$ (7 points).
2. An irreducible conic is an projective variety of the form $C:=Z_{\text {proj }}(f) \subset \mathbb{P}^{2}$, where $f \in k[x, y, z]$ is irreducible, non-zero, and homogeneous of degree 2.
(a) Let $C \subset \mathbb{P}^{2}$ be an irreducible conic. Show that there exists an automorphism $T: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, such that $T(C)=Z_{\text {proj }}(x y+x z+y z)$. Hint: show that there are three points $P, Q, R \in C$ which are not collinear. (12 points)
(b) Prove that $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}, \varphi(a: b)=\left(a^{2}: b^{2}: a b\right)$ is a well-defined morphism (8 points).
(c) Show that the image of φ is an irreducible conic and φ is an isomorphism onto its image (8 points).
(d) Prove that any irreducible conic $C \subset \mathbb{P}^{2}$ is smooth (8 points).
(e) Let $k=\mathbb{C}$. Given any irreducible conic $C \subset \mathbb{P}^{2}$ such that $(0: 0: 1) \notin C$. Consider the morphism $f: C \rightarrow \mathbb{P}^{1},(x: y: z) \rightarrow(x: y)$. Using only the fact that \mathbb{P}^{1} has genus 0 and the previous parts of this exercise, show that the Riemann-Hurwitz formula holds for the analytification of f. Hint: Show that C is defined by $z^{2}+a(x, y) z+b(x, y)$ with a homogeneous of degree 1 and b homogeneous of degree 2. Then show that the discriminant $\Delta=a^{2}-4 b$ is not the zero polynomial and has two distinct roots on \mathbb{P}^{1}. (12 points)
3. In this exercise $k=\mathbb{C}$. Let $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the zero set of the bi-homogeneous polynomial $f\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left(x_{0}^{3}+x_{1}^{3}\right) y_{0}^{2}+\left(x_{0}^{3}-x_{1}^{3}\right) y_{1}^{2}$. Consider the morphism $\varphi: C \rightarrow \mathbb{P}^{1}$, which sends $\left(\left(a_{0}: a_{1}\right),\left(b_{0}: b_{1}\right)\right)$ to $\left(a_{0}: a_{1}\right)$.
(a) State the definition of smoothness of a variety at a point (7 points).
(b) Prove that C is a smooth curve (8 points).
(c) Determine the degree of φ and use Riemann-Hurwitz to show that the genus of C is 2 (8 points).
(d) Let $P \in C$. Show that any divisor D on C satisfies $\operatorname{deg} D \leq \operatorname{dim} H^{0}\left(C, \mathcal{O}_{C}(D+P)\right)$ (8 points).
