ST Master Course on Advanced Functional Programming
 Tuesday, July 5, 2005 (9:00-12:00)

The exam consists of 5 open questions: the maximum number of points for each question is given (100 points in total). Give short and precise answers. If a Haskell function is asked for, try to find an elegant solution, and provide a type signature. It is recommended to read all parts of a question before you provide an answer. Good luck!

1 Typed Controls (25 points)

The wxHaskell GUI library offers a number of controls, including text entries. A text entry can be created with the function

$$
\text { textEntry }:: \text { Window } a \rightarrow[\text { Prop }(\text { TextCtrl }())] \rightarrow I O(\text { TextCtrl }())
$$

and it uses the attribute text :: Textual $w \Rightarrow$ Attr w String to access the value of the input field. A disadvantage of this text attribute is that its value is always a String, even if you want the user to input a value of type Int. To remedy this problem, you have to implement a typed text entry on top of the existing text control.
a) Introduce a new type constant TypedEntry: use either a data or a type declaration. This constant is to be used as TypedEntry $t a$, where t denotes the type of the value (for instance, Int), and a is used to model inheritance. Make TypedEntry a subtype of TextCtrl: all functions that expect a value of type TextCtrl a can be passed a value of type TypedEntry $t a$.
b) Next, we introduce a multi-parameter type class for controls that contain a value of a certain type.

> class TypedValue $t w \mid w \rightarrow t$ where typedValue :: Attr $w($ Maybe $t)$

Explain the meaning of the functional dependency $w \rightarrow t$, and why this is necessary.
c) Of course we make TypedEntry an instance of the type class TypedValue. Assume that we use the Show and Read type classes for converting from and to a String. We introduce a new attribute typedValue.

```
instance (Show t, Read t) => TypedValue t (TypedEntry t a) where
    typedValue = newAttr "typedValue" getter setter
```

Give a definition for the getter and setter functions that are used in the instance declaration above. These two functions should have the following types:

$$
\begin{aligned}
& \text { getter }:: \text { Read } t \Rightarrow \text { TypedEntry } t a \rightarrow I O(\text { Maybe } t) \\
& \text { setter }:: \text { Show } t \Rightarrow \text { TypedEntry } t a \rightarrow \text { Maybe } t \rightarrow I O()
\end{aligned}
$$

You may use the following helper function:

$$
\begin{aligned}
& \text { parseRead }:: \text { Read } a \Rightarrow \text { String } \rightarrow \text { Maybe a } \\
& \text { parseRead } s=\text { case reads } s \text { of } \\
& {[(a, " ")] \rightarrow \text { Just } a} \\
& -\quad \rightarrow \text { Nothing }
\end{aligned}
$$

d) Finally, you are asked to implement the function typedEntry for constructing a TypedEntry.

$$
\begin{aligned}
\text { typedEntry }:: & (\text { Show } t, \text { Read } t) \Rightarrow \\
& \text { Window } a \rightarrow[\text { Prop }(\text { TypedEntry } t())] \rightarrow I O(\text { TypedEntry } t())
\end{aligned}
$$

A default behavior of a TypedEntry should be that as soon as it gets/loses the focus, the content of the TypedEntry should be presented in red if it cannot be parsed (and in black otherwise). You will need the wxHaskell function objectCast for an unsafe cast between two objects (the superclass of all controls). The functions objectCast and focus have the following types:

```
objectCast :: Object \(a \rightarrow\) Object \(b\)
focus \(\quad::\) Reactive \(w \Rightarrow\) Event \(w(\) Bool \(\rightarrow I O())\)
```


2 Monads and QuickCheck (25 points)

a) Instead of defining a monad by bind (\gg) and return, we can also define it in terms of map (hereafter called mmap to avoid confusion with map from the Prelude), join, and return.

$$
\begin{aligned}
& \text { mmap }:: \text { Monad } m \Rightarrow(a \rightarrow b) \rightarrow m a \rightarrow m b \\
& \text { join } \quad:: \text { Monad } m \Rightarrow m(m a) \rightarrow m a
\end{aligned}
$$

Define mmap and join in terms of (\gg) and return, and define (\gg) in terms of mmap, join, and return.
b) A Snoc-list is an alternative representation of a (normal) list: a non-empty Snoc-list consists of the last element of the list, and the rest.

```
data Snoc a =Nil|Snoc a:<a deriving (Show, Eq)
```

Define listToSnoc, such that listToSnoc [1..5] returns

$$
((((N i l:<1):<2):<3):<4):<5
$$

Use higher-order functions if possible.
c) Define the operator (<\#) :: Snoc $a \rightarrow$ Snoc $a \rightarrow$ Snoc a for concatenating two Snoc-lists.
d) Make Snoc an instance of the Monad type class such that the three monad laws are satisfied. Give a definition for the member functions (\gg) and return.
e) Give the type and the result of the function test.

$$
\begin{gathered}
\text { test }=\mathbf{d o} x \leftarrow \text { listToSnoc }[1 . .5] \\
\operatorname{return}(x * x)
\end{gathered}
$$

f) Prove that the first two monad laws hold for a Snoc-list. Use equational reasoning.

$$
\begin{array}{rlll}
(\text { return } x) \gg f & \equiv f x & \text { (left-identity) } \\
m \gg \text { return } & \equiv m & \text { (right-identity) }
\end{array}
$$

g) Give a QuickCheck property to check that also the third monad law holds.

$$
(m \gg f) \gg g \quad \equiv \quad m \ggg(\lambda x \rightarrow f x \gg g) \quad \text { (associativity) }
$$

Indicate precisely how this property can be validated by the QuickCheck system, and make sure that QuickCheck is able to generate random Snoc-lists (with an appropriate distribution of test cases).

3 Laziness (25 points)

Consider a balancing device for comparing two sets of weights. A weight will be represented by an Int value, and is always greater than zero. An arrangement is a pair of lists of weights: the first component of this pair corresponds to the weights on the left side of the balancing device.

$$
\begin{aligned}
\text { type Weight } & =\text { Int } \\
\text { type Weights } & =[\text { Weight }] \\
\text { type Arrangement } & =(\text { Weights, Weights })
\end{aligned}
$$

Given these types, we can define the following helper-functions.

$$
\begin{aligned}
& \text { balance }:: \text { Arrangement } \rightarrow \text { Int } \\
& \text { balance (left, right })=\text { sum right }- \text { sum left } \\
& \text { nrOfWeights }:: \text { Arrangement } \rightarrow \text { Int } \\
& \text { nrOfWeights (left, right })=\text { length left }+ \text { length right }
\end{aligned}
$$

The function balance can be used to compare the sum of the weights on both sides, whereas nrOfWeights counts the total number of weights of an arrangement.

The following problem has to be solved: given some weight w, and a collection of available weights ws, find an arrangement (left, right) such that:

- balance (left, right) returns w
- All available weights in ws are either used (on the left or on the right side) or not used. Each weight can be used only once (no duplication).
- The arrangement has the least number of weights (i.e., minimize nrOfWeights (left, right)).

The number of arrangements to consider for a set of available weights ws is 3^{n} (where $n=$ length ws), which quickly becomes problematic. However, we are only interested in finding a single arrangement with the least number of weights. Your task is to solve the problem such that arrangements using $i+1$ weights are only considered when all possible arrangements using i weights failed. If there is no solution, then it is all right that your function inspects all 3^{n} cases. Rely on lazy evaluation to complete this task.
a) Write a function

$$
\text { arrange }:: \text { Weight } \rightarrow \text { Weights } \rightarrow \text { Maybe Arrangement }
$$

which returns a minimal arrangement for a given weight w, and a collection of available weights $w s$. If no arrangement exists, Nothing should be returned.
Example: arrange 73 [1, 2, 5, 10, 20, 50, 100] returns Just ([2, 5, 20], [100]). Note that two more valid arrangements exist with 4 weights.
b) Suppose we have an infinite supply of the weights that are available (the second argument): a weight can be used more than once. If we allow repeated weights, the number of arrangements to consider becomes infinite, and it is no longer straightforward to determine that no solution exists. Hence, we no longer return a Maybe value. Write a function

$$
\text { arrangeMultiple }:: \text { Weight } \rightarrow \text { Weights } \rightarrow \text { Arrangement }
$$

to solve the modified problem. You may re-use code fragments from the previous question. Example: arrangeMultiple 73 [1,20, 100] returns ($[1,1,1,1,1,1,1,20]$, [100]).

4 Operational Semantics (10 points)

What is the result of evaluating the following expressions (with ghci)? In case an expression cannot be reduced to a value, explain as precisely as possible why not.
a) $(\lambda f \sim[x] \rightarrow f x x)(+)[1 . .10]$
b) null $\$(\lambda \sim(x: x s) \rightarrow x: x s)[]$
c) let $x s=$ replicate $5 \perp$ in length $\$!x s+x s$
d) seq (length (repeat \perp)) True
e) length $[1 .]>$.

5 Higher-order Functions (15 points)

Take a look at the data type Tree, and consider the example tree.

```
data Tree a= Bin (Tree a) a (Tree a)| Leaf deriving Show
tree :: Tree Int
tree = Bin (Bin (Bin Leaf 1 Leaf) 2(Bin Leaf 3Leaf)) 4(Bin Leaf 5 Leaf)
```


a) Write a higher-order function foldTree, which can be used to compute a value for a tree. Also write down the type of foldTree. All functions in the remainder of this question have to be written with this higher-order function.
b) Use foldTree to define the following two functions:

$$
\begin{aligned}
& \text { height } \quad:: \text { Tree } a \rightarrow \text { Int } \\
& \text { mapTree }::(a \rightarrow b) \rightarrow \text { Tree } a \rightarrow \text { Tree } b
\end{aligned}
$$

The function height yields the height of a tree, whereas mapTree applies a given function to all the elements of a tree. For example, height tree gives 3, and mapTree even tree returns Bin (Bin (Bin Leaf False Leaf) True (Bin Leaf False Leaf)) True (Bin Leaf False Leaf).
c) Use foldTree to write a function for collecting the elements of a tree in a depth-first order.

$$
\text { depthfirst :: Tree } a \rightarrow[a]
$$

For instance, depthfirst tree gives $[1,3,2,5,4]$. Take into account that concatenation of two lists (\#) requires a traversal over the left operand: prevent quadratic behavior for depthfirst.
d) Use foldTree to write a function for collecting the elements of a tree in a breadth-first order.

$$
\text { breadthfirst :: Tree } a \rightarrow[a]
$$

For instance, breadthfirst tree gives $[4,2,5,1,3]$. For this part, you don't have to worry about the efficiency of (+).

