GALOIS THEORY - EXAM B (24/06/2010)

- On each sheet of paper you hand in write your name and student number
- Do not provide just final answers. Prove and motivate your arguments!
- The use of computer, calculator, lecture notes, or books is not allowed
- Each problem is worth 25 points. A perfect solution to a complete problem gives a bonus of 0.2 points. The final mark is the minimum between the points earned and 10 .

Problem A

(1) Let K be a field and $L: K$ a finite extension. Prove that $|\operatorname{Gal}(L: K)| \leq$ $[L: K]$.
(2) Consider the field $L=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11})$. Let $\alpha_{1}, \cdots, \alpha_{32}$ be the elements of the form $\pm \sqrt{2} \pm \sqrt{3} \pm \sqrt{5} \pm \sqrt{7} \pm \sqrt{11}$ (each choice for signs gives one of the 32 elements). Let $\alpha_{33}=(\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{7}+\sqrt{11})^{13}$. Prove that there is no field automorphism $\sigma: L \rightarrow L$ that satisfies $\sigma\left(\alpha_{i}\right)=\alpha_{i+1}$ for all $1 \leq i<33$ and $\sigma\left(\alpha_{33}\right)=\alpha_{1}$.

Problem B Let $L=\mathbb{Q}(\sqrt{2+\sqrt{2}})$
(1) Calculate $[L: \mathbb{Q}]$
(2) Prove that $\mathbb{Q}(\sqrt{2}) \subseteq L$
(3) Prove that $L: K$ is a Galois extension (hint: $\sqrt{2+\sqrt{2}} \cdot \sqrt{2-\sqrt{2}}=\sqrt{2}$)
(4) Prove that $\operatorname{Gal}(L: \mathbb{Q})$ is cyclic

Problem C Let K be a field and $f(x) \in K[X]$ a separable polynomial which factorises in $K[X]$ as $f(x)=g(x) h(x)$. Let L_{f}, L_{g} and L_{h} be splitting fields of (respectively) f, g, and h over K.
(1) Show that the splitting fields can be chosen so that $L_{g} \subseteq L_{f}$ and $L_{h} \subseteq L_{f}$. From now on we assume such a choice was made and let $G_{f}=\operatorname{Gal}\left(L_{f}: K\right)$, $G_{g}=\operatorname{Gal}\left(L_{f}: L_{g}\right)$, and $G_{h}=\operatorname{Gal}\left(L_{f}: L_{h}\right)$.
(2) Prove that G_{g} and G_{h} are normal subgroups of G_{f}.
(3) Prove that $G_{g} \cap G_{h}=\{1\}$.
(4) Prove that if $L_{g} \cap L_{h}=K$ then $G_{g} \cdot G_{h}=G_{f}$.

Problem D For each of the following statements decide if it is true or false and give a short argument to support your answer.
(1) Every field of characteristic 0 can be embedded in \mathbb{C}.
(2) Let $f(x) \in \mathbb{Q}[X]$ be a polynomial of degree n and L a splitting field of f over \mathbb{Q}. If $[L: \mathbb{Q}]=n!$ then f is irreducible.
(3) Let $\mathbb{F}_{p^{n}}$ be a field with p^{n} elements (p a prime number). Then for any $1 \leq m \leq n$ there is a subfield $G_{m} \subseteq \mathbb{F}_{p^{n}}$ with $\left|G_{m}\right|=p^{m}$.
(4) Let $\alpha \in \mathbb{R}$ be such that $\mathbb{Q}(\alpha): \mathbb{Q}$ is Galois. If $[\mathbb{Q}(\alpha): \mathbb{Q})]=2^{22}$ then α is constructible.

