TENTAMEN A RINGEN EN GALOISTHEORIE 22-04-2010

- On each sheet of paper you hand in write your name and student number
- Do not provide just final answers. Prove and motivate your arguments!
- The use of computer, calculator, lecture notes, or books is not allowed

Problem A (20 points) Consider the set $\mathbb{Q}_{k}=\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\, n \neq 0(\bmod k)\right\}$, where $k \in \mathbb{N}$.
(1) Prove that \mathbb{Q}_{k} is a sub-ring of \mathbb{Q} if, and only if, k is a prime number.
(2) Let p be a prime number. Prove that (p) is a prime ideal in \mathbb{Q}_{p}.
(3) Prove that $\mathbb{Q}_{p} /(p)$ is a field.

Problem B (20 points) Let $P(X)=X^{4}-X^{3}+X^{2}-X+1$.
(1) Prove that $P(X)$ is reducible in $\mathbb{Z}_{5}[X]$.
(2) Factorize $P(X)$ in $\mathbb{Z}[X]$ and in $\mathbb{Q}[X]$.
(3) Find a polynomial $Q(X)$ that is irreducible over \mathbb{Q} but is reducible over the field \mathbb{F}_{2} with two elements.

Problem C (20 points) Let $L: K$ be an algebraic field extension and $\alpha \in L$.
(1) Prove that if $[K(\alpha): K]$ is odd then $K(\alpha)=K\left(\alpha^{2}\right)$.
(2) Show that the converse does not hold by exhibiting an algebraic extension $L: K$ and $\alpha \in L$ such that $K(\alpha)=K\left(\alpha^{2}\right)$ holds yet $[K(\alpha): K]$ is even.

Problem D (60 points) For each of the following statements decide if it is true or false. Give a short argument to support your answer.
(1) The ring $\mathbb{Z}[\sqrt{-5}]$ is a UFD (Unique Factorization Domain)
(2) $\mathbb{Q}[X] /\left(X^{2}-1\right) \cong \mathbb{Q} \times \mathbb{Q}$
(3) Let K be a field and $p \in \mathbb{N}, p>1$. If the function $\psi: K \rightarrow K$ given by $\psi(x)=x^{p}$ is a ring homomorphism with $\psi(1)=1$ then $\operatorname{char}(K) \neq 0$.
(4) Let R be a domain and $r \in R$. If r is prime then r is irreducible.
(5) There exists a number $x \in \mathbb{Z}$ such $\mathbb{Z} /(x)$ is a domain but not a field.
(6) $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean ring.
(7) The polynomial ring $\mathbb{C}[X, Y, Z]$ is a UFD (Unique Factorization Domain)
(8) The polynomial $X^{17}+4 X^{10}-2 X^{2}-18$ is irreducible in $\mathbb{Q}[X]$.
(9) Let A be the set of all complex numbers that are algebraic over \mathbb{Q}. Then the field of fractions of A is isomorphic to \mathbb{C}.
(10) If R be a commutative ring then the set of all nilpotent elements in R forms an ideal.

