
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 1

Sean Leather

Thursday, 15 December 2010, 08:30–10:30

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

Context-Free Grammars

1 (20 points). Consider the following language definitions:

(a) L1 = {a w | a ∈ A2 ∧ w ∈ A∗ ∧ |w |> 0} where A = {t, u, v}

(b) L2 is the language defined by the following grammar over the alphabet {a, b, z}:

S → R a | S a | z
R→ bR | bS

(c) L3 = {< t > c </ t > | t ∈ L1 ∧ c ∈ L2}

If possible, give another definition of the language using one of the following ap-
proaches: an enumeration, a context-free grammar, or a predicate. Do not use the same
approach that is used in the question.

If you cannot give any alternative definitions, explain why the other approaches do
not work.

Note that |w| denotes the length of the word w.
•

Solution 1.

(a) Note that A2 = A A = {a1 a2 | a1 ∈ A ∧ a2 ∈ A}. L1 can be defined by the following
context-free grammar:

S → W W W+

W → t | u | v

1

(b) L2 = {B zA | B ∈ {b}∗ ∧ A ∈ {a}∗ ∧ (|B |> 0 ⊃ |A |> 0)} where ⊃ is logical
implication.

Also, here is a transformation of the grammar that makes it clearer how the pred-
icate is derived.

S → R aU? | zU?
U→ aU?
R → bR | bS

S → R aU? | zU?
U→ aU?
R → bT
T → R | S

S → bT aU? | zU?
U→ aU?
T → bT | S

S → bT a (a+)? | z (a+)?
T → bT | S

S → bT a a∗ | z a∗
T → bT | S

S → bT a+ | z a∗
T → bT | S

(c) • L3 cannot be defined by an enumeration because the language is infinite.

• L3 cannot be defined by a context-free grammar because the grammar cannot
specify that the first t and second t must be equivalent. Alternatively stated,
a grammar cannot enumerate all possible words for t, because L1 is infinite.

◦

Grammar Analysis and Transformation

2 (30 points). Consider the following context-free grammar over the alphabet {?, /, a, b}:

S → ? T | a | b
T → S | S / S

2

(a) This grammar presents a variant of the “dangling else” problem. Describe the
problem in full, including an example of a problematic sentence for this grammar
and an explanation of why the example is problematic.

(b) If you were the designer of this language, how would you solve this problem?
There are multiple solutions. Describe one possible solution in full, including
any new grammars as necessary. Show how your example, or some modification
thereof, is no longer problematic.

•

Solution 2.

(a) The grammar is ambiguous. Consider this example:

Example: ? ? a / b

It can be parsed in two different ways, producing two different parse trees. If we
use parentheses to indicate nesting in the parse tree, then we can view the two
results as follows:

• ? (? (a / b))

• ? ((? a) / b)

Since different parse trees probably have different meanings, we want to avoid
this ambiguity.

(b) Here are two possible solutions:

a) Change the grammar to be unambiguous. Here, we only allow “closed”
terms the left of a /.

S → C |O
C → ? C / C | a | b
O→ ? S | ? C / O

The example now only has one parse tree:

? (? (a / b))

b) Extend the grammar with a closing symbol:

S → ? T ! | a | b
T → S | S / S

Then, to disambiguate the example, we can insert the new symbol in the
appropriate place.

• ? (? (a / b) !) !

3

• ? ((? a !) / b) !

◦

3 (20 points). Transform the grammar below into a minimal grammar from which we
can immediately derive the simplest and most efficient parser.

S → S a R
S → T
T → a R
R→ b c
P → S S

Name each transformation step and show the grammar after that transformation. You
may use any of the following transformations:

Inline nonterminal Remove duplicate productions
Introduce nonterminal Remove left-recursion
Introduce ·∗ Remove unreachable production
Introduce ·+ Left-factoring
Introduce ·?

•

Solution 3.
Begin with initial grammar:

S → S a R
S → T
T → a R
R→ b c
P → S S

Remove unreachable production:

S → S a R
S → T
T → a R
R→ b c

Introduce nonterminal:

S → S T
S → T
T → a R
R→ b c

Inline nonterminal:

4

S → S T
S → T
T → a b c

Remove left-recursion:

S → T Z | T
Z→ T Z | T
T → a b c

Introduce ·+:

S → T Z | T
Z→ T+

T → a b c

Inline nonterminal:

S → T T+ | T
T → a b c

Introduce ·+:

S → T+

T → a b c

Inline nonterminal (optional):

S→ (a b c)+

◦

Parsing Grammar Descriptions

4 (30 points). There are many other notations for describing context-free (EBNF) gram-
mars than the one we have used in the course. The grammar below describes one of
those notations.

Production → Name = Expression? .
Expression → Alternative (| Alternative)∗

Alternative→ Term+

Term → Name | Token (. . . Token)? |Group |Option | Repetition
Group → (Expression)
Option → [Expression]
Repetition → { Expression }

In this grammar for a language of grammars, production rules are described with a
name and an optional expression and end with a dot. An expression is a nonempty

5

sequence of alternatives with a | separator. An alternative is a nonempty sequence of
terms. A term can be either a name, a single token, a range of tokens with minimum
and maximum separated by a two dots, a subexpression, an optional expression, and a
possibly empty sequenced expression.

(a) The grammar for Name is a word with an initial uppercase character from the
Latin alphabet followed by any number of alphabetic or numeric terminals. Give
the necessary productions, the type (either as a datatype or a type synonym), and
the parser (by using combinators you know and/or defining a new one) for Name.

(b) The grammar for Token is a sequence of alphanumeric or whitespace terminals
between double quotes. Given the necessary productions, the type, and the parser
for Token.

(c) Give the abstract syntax for the grammar of productions in the form of a family
of Haskell types.

(d) Define an efficient parser using the above grammar and abstract syntax.

(e) Define the algebra type and fold for the datatype used for Production.

(f) Using the above fold, define the following semantic functions.

a) The function tokens collects all possible tokens of a production into a list of
tokens. Assume that you can enumerate all tokens in a range with a function
enumRange which takes two tokens and results in a list of tokens.

b) The function productions splits the alternatives of a production into multiple
productions. It produces a list of productions where each new production
has the same name as the input production and only one of the alternatives.

•

Solution 4.

(a) The grammar for Name:

Lower → a . . . z
Upper → A . . . Z
Alpha → Lower |Upper
Digit → 0 . . . 9
AlphaNum→ Alpha |Digit
Name → Upper AlphaNum∗

The type:

type Name = String

The parser:

6

pAlphaNum = satisfy isAlphaNum
pUpper = satisfy isUpper

pName :: Parser Char Name
pName = (:) <$> pUpper <∗> greedy pAlphaNum

(b) The grammar for Token (where means space):

Char → AlphaNum |
Token→ " Char∗ "

The type:

type Token = String

The parser:

pSpace = satisfy isSpace
pChar = pAlphaNum <|> pSpace

pToken :: Parser Char Token
pToken = pack p (greedy pChar) p

where p = symbol ’"’

(c) The abstract syntax:

data Production = Production Name (Maybe Expression)
data Expression = Expression [Alternative]
data Alternative = Alternative [Term]
data Term = Name Name

| Range Token Token
| Token Token
| Group Expression
| Option Expression
| Repetition Expression

(d) The parser:

pProduction :: Parser Char Production
pProduction = Production <$> pName <∗ symbol ’=’<∗> optional pExpression <∗ symbol ’.’
pExpression :: Parser Char Expression
pExpression = Expression <$> listOf pAlternative (symbol ’|’)
pAlternative :: Parser Char Alternative

7

pAlternative = Alternative <$> some pTerm
pTerm :: Parser Char Term
pTerm = Name <$> pName

<|> Range <$> pToken <∗ token "..."<∗> pToken
<|> Token <$> pToken
<|> Group <$> parenthesised pExpression
<|> Option <$> bracketed pExpression
<|> Repetition <$> braced pExpression

(e) The algebra type:

type ProductionAlgebra p e a t =
(Name→ Maybe e→ p — Production
, [a]→ e — Expression
, [t]→ a — Alternative
, Name→ t — Name
, Token→ Token→ t — Range
, Token→ t — Token
, e→ t — Group
, e→ t — Option
, e→ t — Repetition
)

The fold:

foldProduction :: ProductionAlgebra p e a t→ Production→ p
foldProduction alg@(prod, , , , , , , ,) (Production n me)

= prod n (fmap (foldExpression alg) me)
foldExpression :: ProductionAlgebra p e a t→ Expression→ e
foldExpression alg@(, exp, , , , , , ,) (Expression as)

= exp (map (foldAlternative alg) as)
foldAlternative :: ProductionAlgebra p e a t→ Alternative→ a
foldAlternative alg@(, , alt, , , , , ,) (Alternative ts)

= alt (map (foldTerm alg) ts)
foldTerm :: ProductionAlgebra p e a t→ Term→ t
foldTerm alg@(, , , name, range, tok, group, opt, rep) t

= case t of
Name n → name n
Range t1 t2 → range t1 t2
Token t → tok t
Group e → group (foldExpression alg e)
Option e → opt (foldExpression alg e)
Repetition e→ rep (foldExpression alg e)

8

a) Given enumTokens,

enumRange :: Token→ Token→ [Token]

we can define the function tokens:

tokens :: Production→ [Token]
tokens = foldProduction

(const (maybe [] id) — Production
, concat — Expression
, concat — Alternative
, const [] — Name
, enumRange — Range
, (:[]) — Token
, id — Group
, id — Option
, id — Repetition
)

b) The function productions:

productions :: Production→ [Production]
productions = foldProduction

(f — Production
, Expression — Expression
, Alternative — Alternative
, Name — Name
, Range — Range
, Token — Token
, Group — Group
, Option — Option
, Repetition — Repetition
)

where
f :: Name→ Maybe Expression→ [Production]
f Nothing = []
f name (Just (Expression as)) =

map (λa→ Production name (Just (Expression [a]))) as

◦

9

