
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 1

Johan Jeuring

Wednesday, 16 December 2015, 08:30–10:30

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

NinjaPoke studios sells a Unity asset called ‘Dialogue’1, for five dollars.

The Dialogue asset is used for implementing dialogues in games. In this series of exer-
cises we will create part of the functionality of a slightly extended version of this asset.

Here is a simple example dialogue between a player and a friend (presumably the
player represent the person playing the dialogue, and the friend is a virtual character,
but this need not be the case):

Player: Hello!

Friend: Hi!

Player: How are you?

Friend: I’m good

1https://www.assetstore.unity3d.com/

1

https://www.assetstore.unity3d.com/

A dialogue consists of a list of ‘stage directions’ (as NinjaPoke calls them), where each
stage direction consists of an identifier for the character making a statement (in this case
Player and Friend, but you may use any names here), followed by a colon, followed
by one or more spaces, and then a sentence. There is a newline at the end of such a
sentence.

Instead of a sentence, you can also offer a choice between various sentences, so that a
player (or anyone else) can choose between different options. Every choice has a score,
and can be followed by a different part of the dialogue. For example:

Harry: Hello!

Sally: Hi, how are you?

Harry: {I feel tired} [goto Tired] 2

{Not bad} [end] 3

{I’m feeling sick} [call BuyMedicine] 1

-Tired

Sally: Go to sleep then

The various options offered to Harry (in this case) are surrounded by { and }. The
options are followed by a command, which is surrounded by [and], and a score,
which is an integer. A command is either end, denoting that a dialogue ends here, a
call to a method (an identifier in our case, BuyMedicine), or a jump goto that takes a
label (Tired) as argument. Further down in the dialogue the label appears on its own
line, preceded by a - (-Tired). Below this label appears the piece of dialogue you want
to play if the player selects the option to which this goto label is connected.

1 (12 points). Give a concrete syntax (a context-free grammar) of this language for dia-
logues. You may use nonterminal Identifier to recognise a single name, String to recog-
nise the content of a sentence (a string not containing a newline or a closing curly paren-
thesis }), and Integer to recognise a score. Describe the language as precisely as possible,
but you may ignore occurrences of spaces (you may include them as well). •

Solution 1.

Dialogue → Direction∗

Direction → Label | Statement
Label → "-" Identifier "\n"
Statement → Character ":" Utterance
Character → Identifier
Utterance → Sentence "\n" |Options
Sentence → String
Options → ("{" Sentence "}" Jump Score)∗

Jump → "[" Command "]"

Command→ "goto" Identifier | "end" | "call" Method
Method → Identifier
Score → Integer

2

Here is the above example sentence:

example = player1 ++ friend1 ++ player2 ++ label ++ friend2
player1 = "Player: Hello!\n"

friend1 = "Friend: Hi, how are you?\n"

player2 = "Player: "++ option1 ++ option2 ++ option3
option1 = "{Tired} [goto Tired] 2\n"

option2 = " {Good} [end] 3\n"

option3 = " {Sick} [call BuyMedicine] 1\n"

label = "-Tired\n"

friend2 = "Friend: Go to sleep then"

Marking

◦
2 (12 points). Discuss three grammar transformations: describe in words what they do,
give an example of their application, and discuss whether or not they can be applied to
the grammar you defined in Task 1, and, if they can be applied, what the result would
look like. •
Solution 2.

Marking

◦
3 (12 points). Define an abstract syntax (a (data) type Dialogue in Haskell) that corre-
sponds to your concrete syntax given as an answer in Task 1, which you can use to
represent a dialogue in Haskell. •
Solution 3.

type Dialogue = [Direction]
data Direction = Label Label | Statement Statement deriving Show
type Label = Identifier
type Statement = (Character, Utterance)
type Character = Identifier
data Utterance = Sentence Sentence |Options Options deriving Show
type Sentence = String
type Options = [(Sentence, Jump, Score)]
type Jump = Command
data Command = Goto Identifier | End | Call Method deriving Show
type Method = Identifier
type Score = Int
type Identifier = String

3

Marking

◦

4 (12 points). Define a parser pDialogue :: Parser Char Dialogue that parses sentences
from the language of dialogues. Define your parser using parser combinators. •

Solution 4.

pDialogue :: Parser Char Dialogue
pDialogue = many pDirection
pDirection :: Parser Char Direction
pDirection = Label <$> pLabel <|> Statement <$> pStatement
pLabel :: Parser Char Label
pLabel = symbol ’-’ ∗> identifier <∗ symbol ’\n’
pStatement :: Parser Char Statement
pStatement = (,)<$> (pCharacter <∗ tokensp ":")<∗> pUtterance
pUtterance :: Parser Char Utterance
pUtterance = Sentence <$> pSentence <∗ symbol ’\n’<|> Options <$> pOptions
pOptions :: Parser Char Options
pOptions = many ((, ,)<$>

(tokensp "{" ∗> pSentence)<∗> (tokensp "}" ∗> pJump)<∗> integersp
)

pJump :: Parser Char Jump
pJump = tokensp "[" ∗> pCommand <∗ tokensp "]"

pCommand :: Parser Char Command
pCommand = Goto <$> (tokensp "goto" ∗> identifier)

<|> End <$ token "end"

<|> Call <$> (tokensp "call" ∗> pMethod)
pMethod, pCharacter, pSentence :: Parser Char Identifier
pMethod = identifier
pCharacter = identifier
pSentence = greedy (satisfy (λc→ (c 6≡ ’\n’) ∧ (c 6≡ ’}’)))

spaces = greedy (satisfy isSpace)
tokensp s = token s <∗ spaces
integersp = integer <∗ spaces
— Parser test case
test = fst $ head $ pDialogue example

Marking

◦

4

Dialogues have a tree-like structure that is not directly visible in the concrete syntax,
and hence not in the derived abstract syntax given in Task 3 either. I will now define
an abstract syntax that encodes the tree-like structure. To keep things simple for the
following exercises, I assume that if there is a choice in a dialogue, there are always
exactly two options.

A value of the abstract dialogue data type (ADialogue) is either the empty dialogue
ADEnd, or it is a Single statement (a Sentence from a particular Character) followed by
a dialogue, or it is a Choice for a Character between two options, where each option
consists of a Sentence, a Score, and a dialogue that follows when the Character chooses
this option.

— Simplified abstract dialogue type in which there are never more than two choices
data ADialogue = Single Character Sentence ADialogue

| Choice Character
(Sentence, ADialogue, Score)
(Sentence, ADialogue, Score)

| ADEnd
type Character = Identifier
type Sentence = String
type Score = Int

5 (12 points). Define the algebra type, and the fold for the data type ADialogue. You may
assume that the types Sentence, Score, and Character are constant types such as Int and
String, that is, you don’t have to define a fold for these types. •

Solution 5.

type ADialogueAlgebra a = (Character→ Sentence→ a→ a
, Character→ (Sentence, a, Score)→ (Sentence, a, Score)→ a
, a
)

foldDialogue :: ADialogueAlgebra a→ ADialogue→ a
foldDialogue alg@(single, choices, end) = f where

f (Single c s a) = single c s (f a)
f (Choices c (se1, a1, sc1) (se2, a2, sc2)) = choices c (se1, f a1, sc1) (se2, f a2, sc2)
f ADEnd = end

Marking

◦
The following dialogue:

5

Player: Hi

Friend: How are you?

Player: {Good} [goto i0] 3

{Bad} [goto i3] 2

-i0

Friend: Good to hear

Player: {Thanks for asking} [end] 2

{Yes, yes} [end] 1

-i3

Friend: Sad to hear

Player: {Well, what do you think?} [end] 0

{Yes, but thanks for asking} [end] 1

is represented by the following value of the data type ADialogue:

exADialogue =
Single "Player" "Hi"

$ Single "Friend" "How are you?"

$ Choices "Player" ("Good", ead2, 3) ("Bad", ead3, 2)
ead2 =

Single "Friend" "Good to hear"

$ Choices "Player" ("Thanks for asking", ADEnd, 2) ("Yes, yes", ADEnd, 1)
ead3 =

Single "Friend" "Sad to hear"

$ Choices "Player" ("Well, what do you think?", ADEnd, 0)
("Yes, but thanks for asking", ADEnd, 1)

When a player plays this dialogue, he or she scores points at each choice. The total
score of playing a dialogue is the sum of the scores at the choices taken. For example, if
the player plays the following dialogue:

Player: Hi

Friend: How are you?

Player: Good

Friend: Good to hear

Player: Yes, yes

he or she scores 4 points in total.

6

6 (10 points). Define a function maxScore :: ADialogue→ Score that returns the maximum
total score you can obtain in a dialogue, where a score is the sum of the scores at each
option chosen. Define maxScore using the fold on the data type ADialogue defined in
Task 5. •
Solution 6.

maxScore :: ADialogue→ Score
maxScore = foldDialogue maxScoreAlg where

maxScoreAlg = (λc s d→ d
, λc (se1, a1, sc1) (se2, a2, sc2)→ max (a1 + sc1) (a2 + sc2)
, 0
)

Marking

◦
7 (10 points). Define a function ppDialogue :: ADialogue → (Int → (String, Int)) that
prints an abstract dialogue in a way similar to how the example dialogues at the begin-
ning of this exam are presented. The value of type String in the resulting tuple is the
printed dialogue. The Int that is passed in and returned in the computation is a number
used to generate the labels for the parts of the paragraphs to which the commands in
the choices jump. Define ppDialogue using the fold on the data type ADialogue defined
in Task 5. •
Solution 7.

ppDialogue :: ADialogue→ (Int→ (String, Int))
ppDialogue = foldDialogue ppAlg where

ppAlg = (λc s d→ λi→ let (s1, i1) = d i in (c ++ ": "++ s ++ "\n"++ s1, i1)
, λc (se1, a1, sc1) (se2, a2, sc2)→ λi→

let (s1, i1) = a1 (i + 1)
(s2, i2) = a2 (i1 + 1)
c1 = if i1 = = i + 1

then "[end] "++ show sc1 ++ "\n"

else "[goto i"++ show i ++ "] "++ show sc1 ++ "\n "

c2 = if i2 = = i1 + 1
then "[end] "++ show sc2 ++ "\n"

else "[goto i"++ show i1 ++ "] "++ show sc2 ++ "\n"

l1 = if i1 = = i + 1 then "" else "-i"++ show i ++ "\n"++ s1
l2 = if i2 = = i1 + 1 then "" else "-i"++ show i1 ++ "\n"++ s2

in (c ++ ": "++ "{"++ se1 ++ "} "++ c1 ++ "{"++ se2 ++ "} "++ c2 ++ l1 ++ l2
, i2)

, λi→ ("[end]\n", i)
)

7

Marking

◦

8 (5+5 points).

(a) Give a nondeterministic finite automaton that recognizes the sentences ”en”, ”een”,
”eenram”, ”enra”, and ”bera”, and no more. The fewer states the better, but
you don’t have to construct an automaton with the absolute minimum number
of states.

Solution 8.

Sstart A B C D

Estart F G

Hstart I J K L M N

e n r a

b e

r

e e n r a m

Marking

◦

(b) Is your nondeterministic automaton deterministic? If not, transform this nonde-
terministic automaton into a deterministic automaton using the standard trans-
formation technique.

Solution 8.

8

SEHstart AI

F G

B C D

J K L M N

e

b

n

e

r

e

n r a m

a

r

Marking

◦

•

9

