
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 1

Johan Jeuring

Thursday, 19 December 2013, 08:30–10:30

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

In the following five exercises you will write a parser for (a part of) a language for de-
scribing genealogic information in the form of family trees, and you will define several
functions for obtaining particular kinds of information from a family tree, such as the
oldest person in a family tree, and all names appearing in a family tree.

Here are two examples of sentences from the language for family trees:

BEGIN Hans Baas 12 January 1980 END

BEGIN Grietje Huizen 4 December 1953

FATHER BEGIN Gert Huizen 11 February 1926 30 March 1987 END

MOTHER BEGIN Anna Buurten 13 July 1929 END

END

A sentence in a family tree consists of:

• a single person: the keyword BEGIN, followed by a list of names, followed by a
birth date, and an optional (a person may still live) date of death, followed by the
keyword END.

• or a person (as above, so starting with the keyword BEGIN etc.) together with
his or her father and mother, each consisting of a family tree sentence, possibly
containing more fathers and mothers. The father and mother are given after the
(optional) date of death, starting with FATHER and MOTHER, respectively.

1 (12 points). Give the concrete syntax (a context-free grammar) of this language for
family trees. •

1

Solution 1. Concrete syntax for genealogical data:

FamilyTree→ Single | Child
Single → "BEGIN" Person "END"

Person → Name ∗ Date Date ?
Child → "BEGIN" Person "FATHER" FamilyTree "MOTHER" FamilyTree "END"
Date → Z Month Z
Month → "January" | . . . | "December"

where Z is a nonterminal generating integers. Here are some example sentences:

fts = "BEGIN Hans Baas 12 January 1980 END"

ftc = "BEGIN Grietje Huizen 4 December 1953 FATHER "++ ftf ++ " MOTHER "++ ftm ++ " END"

ftf = "BEGIN Gert Huizen 11 February 1926 30 March 1987 END"

ftm = "BEGIN Anna Buurten 13 July 1929 END"

Marking
Family tree is a list instead of a tree: -2
Missing syntax for BEGIN, END, FATHER, MOTHER: -2
A list of parents instead of two parents: -2
Also two fathers or mothers are possible: -2
Different order of parents: -2
Exactly two names: -2
Just one name: -2
Months represented as strings: -2
Months represented as two digits: -2
All components of date represented as string: -2
Missing definitions: -2 (depending on size)

◦
The abstract syntax of the language for family trees is given by the following datatypes:

data FamilyTree = Single Person
| Child Person FamilyTree FamilyTree deriving Show

type Person = (Name, Birth, Maybe Death)
type Name = [String]
type Birth = Date
type Death = Date
type Date = (Day, Month, Year)
type Day = Int
type Month = Int
type Year = Int

2

2 (12 points). Define a parser pFamilyTree :: Parser Char FamilyTree that parses sentences
from the language of family trees. •

Solution 2.

spaces = greedy (satisfy isSpace)
tokensp s = token s <∗ spaces
identifiersp = identifier <∗ spaces
integersp = integer <∗ spaces
today :: Date
today = (19, 12, 2013)
pFamilyTree :: Parser Char FamilyTree
pFamilyTree = pSingle

<|> pChild
pSingle :: Parser Char FamilyTree
pSingle = Single

<$ tokensp "BEGIN"

<∗> pPerson
<∗ tokensp "END"

pPerson :: Parser Char Person
pPerson = (λnames birth mdeath→ (names, birth, mdeath))

<$> many pName
<∗> pBirth
<∗> option (Just <$> pDeath) Nothing

pChild :: Parser Char FamilyTree
pChild = (λp f m→ Child p f m)

<$ tokensp "BEGIN"

<∗> pPerson
<∗ tokensp "FATHER"

<∗> pFamilyTree
<∗ tokensp "MOTHER"

<∗> pFamilyTree
<∗ tokensp "END"

pBirth, pDeath, pDate :: Parser Char Date
pBirth = pDate
pDeath = pDate
pDate = (λd m y→ (d, m, y))

<$> integersp
<∗> pMonth
<∗> integersp

months = ["January", "February", "March", "April", "May", "June"
, "July", "August", "September", "October", "November", "December"
]

3

pMonth :: Parser Char Month
pMonth = foldr1 (<|>) (zipWith (λx y→ const x <$> y) [1 . . 12] (map tokensp months))
pName = identifiersp
— Parser test cases
testfts = pFamilyTree fts
testftc = pFamilyTree ftc
testftf = pFamilyTree ftf
testftm = pFamilyTree ftm

Marking
The parser does not follow the concrete syntax: -2
Missing or incorrect parsers for tokens: -2
Optional date parser incorrect (type error, or missing default value): -2
Parser for name incorrect: -2
Parser for month incorrect: -2
Abstract syntax value not constructed correctly: -2
Wrong usage of parser combinators: -2 or -4

◦

3 (12 points). Define the algebra type, and the fold for the datatype FamilyTree. You may
assume that the type Person is a constant type such as Int and String, that is, you don’t
have to define a fold for Person. •

Solution 3.

type FamilyTreeAlgebra a = (Person→ a
, Person→ a→ a→ a
)

foldFamilyTree :: FamilyTreeAlgebra a→ FamilyTree→ a
foldFamilyTree (single, child) = fold

where fold (Single p) = single p
fold (Child p f m) = child p (fold f) (fold m)

Marking
The maximum score for the algebra is 4, and for the fold 8.
For the algebra part:
Recursive occurrences not replaced by variables: -4
Type variable not bound by argument: -1
Using String instead of Person: -2
For the fold part:
Type does not correspond to algebra: -2

4

Not recursive: -6
foldFamily instead of fold in the recursive call: -2
A type variable instead of Person in the algebra not resolved in the fold: -2

◦

4 (12 points). Define a function oldest :: FamilyTree → Person that returns the oldest
person in a family tree. Define function oldest as a fold on the datatype FamilyTree. You
may assume the existence of a function age :: Person → Int, which returns the age of a
person in number of days. •

Solution 4.

— imprecise implementation of age:
age :: Person→ Int
age (n, (bd, bm, by), md) = let (rd, rm, ry) = case md of

Just (dd, dm, dy)→ (dd, dm, dy)
Nothing → today

in (ry− by) ∗ 365 + (rm− bm) ∗ 30 + (rd− bd)
oldest :: FamilyTree→ Person
oldest = foldFamilyTree (single, child)

where single p = p
child p fo mo = maxWith age [p, fo, mo]

maxWith :: Ord a⇒ (b→ a)→ [b]→ b
maxWith f [x] = x
maxWith f (x : xs) = if f x > f xs′ then x else xs′

where xs′ = maxWith f xs

Marking
Only the single case is correct: (+)2
Age instead of person as result: -2
Person in child is not taken into account: -2
Double recursion: -8

◦

5 (12 points). The function names, which returns all names appearing in a family tree,
can be defined as follows:

names :: FamilyTree→ [Name]
names = foldFamilyTree (single, child)

where single (n, bd, dd) = [n]
child (n, bd, dd) nf nm = n : nf ++ nm

5

The operator ++ used in the definition of child makes this definition rather inefficient.
We get a more efficient function by accumulating the list of names in a parameter. The
type of the function then becomes:

names′ :: FamilyTree→ [Name]→ [Name]

Define the function names′ as a fold on the datatype FamilyTree. •

Solution 5.

names′ = foldFamilyTree (single, child)
where single (n, bd, dd) = λns→ n : ns

child (n, bd, dd) nf nm = λns→ let {ns′ = nf ns; ns′′ = nm ns′}
in n : ns′′

Marking
Father and mother are not used: -6
The accumulator is passed on incorrectly: -6
Wrong recursive usage of functions: -4
Double recursion: -8

◦

6 (15 points). Consider the following context-free grammar over the alphabet {a, b, c, +}
with the start symbol A:

A→ Bb |A+A |ABa
B → cA | ε

The operator + is associative.
Describe a sequence of transformations for simplifying this grammar. The resulting

grammar should be minimal and suitable for deriving a parser (using parser combina-
tors). The grammar should not be ambiguous and should not result in inefficiency or
nontermination in the parser.

You may use any of the transformations in the following list or another transforma-
tion discussed during the lecture or in the lecture notes.
• Inline nonterminal • Remove duplicate productions
• Introduce nonterminal • Remove left-recursion
• Introduce ·∗ • Remove unreachable production
• Introduce ·+ • Left-factoring
• Introduce ·?

For each transformation step in the sequence, describe the transformation and give
the transformed grammar. You may use at most two transformations in one step, but
you must mention both of them (e.g. “Inline S and remove unreachable production”).

•

6

Solution 6. Initial grammar:

A→ Bb |A+A |ABa
B → cA | ε

Inline B:

A→ cAb | b |A+A |AcAa |Aa

B → cA | ε

Remove unreachable production:

A→ cAb | b |A+A |AcAa |Aa

Remove left-recursion:

A→ cAb | cAbZ | b | bZ
Z → +A | +AZ | cAa | cAaZ | a | aZ

Introduce Z? (corresponds to left-factoring):

A→ cAbZ? | bZ?
Z → +AZ? | cAaZ? | aZ?

Marking
One simple transformation (such as Introduce ·?) correct: (+)2
One transformation wrong: -2
Left-recursion removal used correctly: +5

◦

7 (15 points). Consider the following three languages:

(a) {(ab)n | n in N}

(b) {an bn | n in N}

(c) {an bm | n, m in N}

For each of these languages, answer the question: is the language regular? If so, give
a DFA accepting the language, if not, prove that it is not regular using the pumping
lemma. •

Solution 7.

(a) This language is regular.

7

Sstart Z

a

b

(b) The language is not regular. We use the regular pumping lemma to prove this.

Let n ∈ N.
Take s = xyz, with x = an, y = bn, and z = ε. The sentence s = an bn is an element
of the language.
Let u, v, w be such that y = uvw with v 6≡ ε, that is, u = bp, v = bq and w = br with
p + q + r = n and q > 0.
Take i = 2, then xuv2wz = anbp+2q+r=anbn+q.
Since q > 0, this is not a sentence in the language of the grammar.
Using the negative version of the regular pumping lemma, we conclude that this
language is not regular.

(c) This language is regular.

Sstart Z

a

b

b

Marking
Maximum score for a) and c) is 2.5, and for b) 10 (2.5 + 7.5).
ε is not accepted: -1
Automaton accepting (a∗ b∗)∗: -1.5
Regular expression instead of DFA: -1.5
Edges without labels: -0.5
Clumsy or incomplete proof: -1 to -2.5

◦

8

