
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Exam 1

Johan Jeuring

Wednesday, 21 December 2016, 11:00–13:00

Preliminaries

• The exam consists of 12 pages (including this page). Please verify that you got all
the pages.

• Fill out the answers on the exam itself.

• Write your name and student number here:

• The maximum score is stated at the top of each question. The total amount of
points you can get is 100.

• Try to give simple and concise answers. Write readable text. Do not use pencils
or pens with red ink. You may use Dutch or English.

• When writing grammar and language constructs, you may use any set, sequence,
or language operations covered in the lecture notes.

• When writing Haskell code, you may use Prelude functions and functions from
the following modules: Data.Char, Data.List, Data.Maybe, and Control.Monad. Also,
you may use all the parser combinators from the uu-tc package. If you are in
doubt whether a certain function is allowed, please ask.

Good luck!

1

Multiple-choice questions

In this series of 10 multiple-choice question, you get:

• 5 points for each correct answer,

• 1 point if you do not answer the question,

• and 0 points for a wrong answer.

Answer these questions with one of a, b, c, or d. Sometimes multiple answers are correct,
and then you need to give the best answer.

1 (5 points). A grammar has the following productions:

T → y | xTx | TxyxT

Which of the following sequences is a sentence in the language of T?

a) yxyxxxyxx

b) xxxyyyxxx

c) yxyxyxyx

d) yxyxxxxxyxy

•

2 (5 points). A grammar has the following productions:

T → ε | Tx | xTy

If we add a single production to this grammar, we can derive the sentence xxyyxxyy.
Which of the following productions do we have to add?

a) T → xTyy

b) T → yyTxx

c) T → TT

d) All of the above answers are correct.

•

2

3 (5 points). You want to write a parser using the standard parser combinator approach
for the following grammar:

S → Ra | Sa | z
R → bR | bS

Before you construct the parser, you first transform the grammar by:

a) Removing left-recursion obtaining

S → (Ra)Z? | zZ?
Z → aZ?
R → bR | bS

b) Left-factoring obtaining

S → Ra | Sa | z
R → bT
T → R | S

c) Left-factoring, inlining, and removing unused productions obtaining

S → bTa | Sa | z
T → bT | S

d) Removing left-recursion, left-factoring, introducing +/*, inlining, and removing
unused productions obtaining

S → bTa+ | za∗

T → bT | S

•

4 (5 points). Suppose we have a parser pExpr :: Parser Char Expr, where the datatype
Expr has a constructor Let Identifier Expr Expr. What is the type of the following parser
combinator?

pDecl = Let <$ token "let"

<∗> identifier
<∗ symbol ’=’
<∗> pExpr
<∗ token "in"

<∗> pExpr

3

a) Parser Char (Identifier→ Expr→ Expr→ Expr)

b) Parser Char ((Identifier, Expr, Expr)→ Expr)

c) Parser Char (String→ Identifier→ Char→ Expr→ String→ Expr→ Expr)

d) Parser Char Expr

•

5 (5 points). The parser sepBy p sep parses one or more occurrences of p (for example, a
parser for integers), separated by sep (for example, a parser for a comma).

sepBy :: Parser Char a→ Parser Char b→ Parser Char [a]

Which of the below definitions is the correct implementation of sepBy?

a) sepBy p sep = (:)<$> p <∗> option ((λx y→ y)<$> sep <∗> sepBy p sep) []

b) sepBy p sep = (:)<$> p <∗> many1 ((λx y→ y)<$> sep <∗> p)

c) sepBy p sep = (:)<$> p <∗> sep <∗> sepBy p sep <|> succeed []

d) sepBy p sep = (:)<$> p <∗> option ((λx y→ y)<$> sep <∗> p) []

•

An AVL tree is a classical data structure, designed in 1962 by Georgy Adelson-Velsky
and Evgenii Landis. In an AVL tree, the heights of the two child subtrees of any
node differ by at most one; if at any time they differ by more than one, rebalancing
is done to restore this property. The datatype AVL is defined as follows in the module
Data.Tree.AVL.

data AVL e = E — Empty Tree
| N (AVL e) e (AVL e)— right height = left height + 1
| Z (AVL e) e (AVL e)— right height = left height
| P (AVL e) e (AVL e) — left height = right height + 1

6 (5 points). What is the algebra type for the datatype AVL?

a) type AVLAlg e r = (r, r→ e→ r, r→ e→ r, r→ e→ r)

4

b) type AVLAlg r = (r, r→ r→ r→ r, r→ r→ r→ r, r→ r→ r→ r)

c) type AVLAlg e r = (r, r→ e→ r→ r, r→ e→ r→ r, r→ e→ r→ r)

d) type AVLAlg r = (r, r→ r→ r, r→ r→ r, r→ r→ r)

•

7 (5 points). How do you define the function foldAVL, the standard fold on the datatype
AVL?

a) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n (fold l) (fold m) (fold r)
fold (Z l m r) = z (fold l) (fold m) (fold r)
fold (P l m r) = p (fold l) (fold m) (fold r)

b) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n l m r
fold (Z l m r) = z l m r
fold (P l m r) = p l m r

c) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n (fold l) m (fold r)
fold (Z l m r) = z (fold l) m (fold r)
fold (P l m r) = p (fold l) m (fold r)

d) foldAVL (e, n, z, p) = fold where
fold E = e
fold (N l m r) = n l (fold m) r
fold (Z l m r) = z l (fold m) r
fold (P l m r) = p l (fold m) r

•

5

8 (5 points). The height of an AVL tree is an essential concept in AVL trees. How do you
define the function heightAVL as a foldAVL?

a) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + heightAVL r
z l m r = 1 + heightAVL r
p l m r = 1 + heightAVL l

b) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + max (heightAVL l) (heightAVL r)
z l m r = 1 + max (heightAVL l) (heightAVL r)
p l m r = 1 + max (heightAVL l) (heightAVL r)

c) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + r
z l m r = 1 + r
p l m r = 1 + l

d) heightAVL = foldAVL (e, n, z, p) where
e = 0
n l m r = 1 + foldAVL (e, n, z, p) r
z l m r = 1 + foldAVL (e, n, z, p) r
p l m r = 1 + foldAVL (e, n, z, p) l

•

9 (5 points). Suppose we have an AVL-tree with integers, and an environment that maps
integers to strings. We want to replace the integers in the AVL-tree by their correspond-
ing strings in the environment. You can use the function lookup :: Env → Int → String
to look up strings in the environment. Define the function

replace :: AVL Int→ Env→ AVL String

that replaces all integers in an AVL-tree by the strings to which they are bound in the
environment.

6

a) replace env = foldAVL (e, n, z, p) where
e = E
n = λl m r→ N l (lookup env m) r
z = λl m r→ Z l (lookup env m) r
p = λl m r→ P l (lookup env m) r

b) replace = foldAVL (e, n, z, p) where
e = λenv→ E
n = λenv l m r→ N (l env) (lookup env m) (r env)
z = λenv l m r→ Z (l env) (lookup env m) (r env)
p = λenv l m r→ P (l env) (lookup env m) (r env)

c) replace = foldAVL (e, n, z, p) where
e = λenv→ E
n = λl m r env→ N (l env) (lookup env m) (r env)
z = λl m r env→ Z (l env) (lookup env m) (r env)
p = λl m r env→ P (l env) (lookup env m) (r env)

d) replace env = foldAVL (e, n, z, p) where
e = E
n = λl m r→ N (l env) (lookup env m) (r env)
z = λl m r→ Z (l env) (lookup env m) (r env)
p = λl m r→ P (l env) (lookup env m) (r env)

•

10 (5 points). Consider the following language:

L = {x | x ∈ {a, b}∗, length x is odd, bb is a substring of x}

Which of the following automata, with start state S, generates L?

a)

BASstart

CD

b b

a, b a, ba, b a, b

7

b)

BASstart

CD E

b b

a, b a, ba, b a, b

b b

c)

BASstart

CD E

b b

a, b a, ba a

b b

d) All three automata generate L.

•

8

Open answer questions

On wit.ai (nowadays owned by Facebook) you can create your own chatbots. Here is
an example discussion with a chatbot I created on wit.ai:

The wit.ai website receives many chatbot discussions, and analyses these. To analyse
a discussion, it has to be parsed. The concrete syntax of the above discussion looks as
follows:

Client:

Ja, we moeten het ook nog even over de meivakantie hebben

Bot:

Ach ja, dat is ook zo

Client:

Wat zouden we allemaal kunnen doen?

{Onderhandelen=5

,relatie=5

}

Bot:

We hebben een week, niet? Laat in mei is het bijna overal al goed weer

Client:

Ja, Parijs lijkt me heerlijk

{Onderhandelen=-5

,relatie=-5

}

Bot:

Nou dan moet dat maar

A chatbot-discussion consists of a list of alternating statements between a Client and a
Bot, where the Client starts the discussion. Each statement starts with an identifier of
who speaks (Bot or Client), followed by a colon, followed by spaces and/or newlines,
and then a sentence. The Client statements may be followed by scores on a number
of parameters, where parameters and scores are separated by an ‘=’. The scores are
presented between braces { and }.

9

wit.ai
wit.ai
wit.ai

11 (15 points). Give a concrete syntax (a context-free grammar) of this language for
chatbot-discussions. You may use a non-terminal symbol called String to recognise the
content of a sentence (a string not containing a newline), and a non-terminal called
Integer to recognise a score. Describe the language as precisely as possible, but you may
ignore occurrences of spaces (you may include them as well). •

10

12 (15 points). Define an abstract syntax (a (data) type Discussion in Haskell) that cor-
responds to your concrete syntax given as an answer in Task 11, which you can use to
represent a chatbot-discussion in Haskell. •

11

13 (20 points). Define a parser pDiscussion :: Parser Char Discussion that parses sentences
from the language of chatbot-discussions. Define your parser using parser combina-
tors. •

12

