
EXAM FUNCTIONAL PROGRAMMING
Tuesday the 5th of November 2013, 9.00 h. - 12.00 h.

Name:
Student number:

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think
is the best answer. Use the empty boxes under the other questions to write your answer and explanations
in. Use the empty paper provided with this exam only as scratch paper (kladpapier). At the end of the
exam, only hand in the filled-in exam paper. Answers will not only be judged for correctness, but also
for clarity and conciseness. A total of one hundred points can be obtained; divide by 10 to obtain your
grade. Good luck!

1. We want to implement a function that computes the size of a value of a given type by means of
type classes. Hence, we introduce:

class Sizable t where
size :: t → Int

-- An Int is an atomic value:
instance Sizable Int where

size i = 1

(i) Give an instance declaration for sizing lists. The size of a list is obtained by adding the sum
of the sizes of its elements to the number of elements in the list.

. . . /8 The simplest implementation is:

instance Sizable a ⇒ Sizable [a ] where
size xs = length xs + sum (map size xs)
}

Essential here is that you also compute the size of all the elements in the list, and to
understand that you also need to add Sizable a as a condition in the instance declaration.
An alternative that avoids map and sum is

instance Sizable a ⇒ Sizable [a ] where
size [ ] = 0
size (x : xs) = 1 + size x + size xs

And with a foldr you get
instance Sizable a ⇒ Sizable [a ] where

size = foldr (λx r → size x + 1 + r)
Score break down: 3 for the condition, 5 for the code. In the code you get 2 for counting
the elements in the list, and 3 for computing the sizes of the elements and adding them up.
For small syntactic issues you can get the occasional -1.
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2. In this question we deal with a function perms :: [a ] → [[a ]] which returns all the permutations
(i.e., all possible orderings) of the argument list.

(i) What are the permutations of [1,2,3,4] that start with 1?

. . . /4 [1,2,3,4], [1,2,4,3], [1,3,2,4], [1,3,4,2], [1,4,2,3], [1,4,3,2].

If you show that you understand what a permutation is, you still get 3 points.

(ii) Explain how you can compute perms (x : xs) from perms xs (for example by using concrete
values for x and xs)

. . . /6 Here you should explain that given a result, say rs = [[2, 3], [3, 2]] = perms [2, 3],

you can extend it to an answer for [1, 2, 3], by taking every element in rs, and put 1 into
that list in every possible position. For [2, 3] you then get [[1, 2, 3], [2, 1, 3], [2, 3, 1]], and
similarly for [3, 2]. The results is then the concatenation of these two.

(iii) Now, write the function perms :: [a ]→ [[a ]]

. . . /9 The function and the helper function it needs can be found in the slides, and are:

between :: a → [a ]→ [[a ]]
between e [ ] = [[e ]]
between e (y : ys) = (e : y : ys) : map (y :) (between e ys)

perms [ ] = [[ ]]
perms (x : xs) = concat (map (between x ) (perms xs))

The code for perms gets 4 points (1 for the base case, 3 for the recursive), the code for
between 5 (2 for the base case, 3 for the recursive). General rule: no code but a correct
signature gets you one point.
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3. In this question we again see the perms function of the previous question. Even if you failed to
come up with an implementation for perms, you may still be able to answer this one.

(i) Give a QuickCheck property that can check that all lists in the outcome of perms have the
right length.

. . . /8

propi xs = all (≡ length xs) (map length (perms xs))

(ii) Give the same property as at (i), but now so that it will only check this for input lists that
have no duplicate elements.

. . . /6

propii xs = allUnique xs ==> all (≡ length xs) (map length (perms xs))
where

allUnique xs = length (nub xs) ≡ length xs
allUnique ′ [ ] = True
allUnique ′ (x : xs) = if elem x xs then False else allUnique ′ xs

allUnique ′ is an alternative for allUnique. You get 3 points for the allUnique xs==>, and
2 for the implementation of allUnique itself, 1 point for keep the rest of the property as it
is.

(iii) Chances may be small that a randomly generated list of Ints has no duplicates, and QuickCheck
may give up in despair. Define a generator to generate random lists with no duplicate ele-
ments.

. . . /5 For writing a generator like this you get 3 points:

genNoDups :: Gen [Int ]
genNoDups = do

xs ← arbitrary -- Can generate any list
return (nodup xs)

Now there are many possibilities for nodup. One is to have nodup = nub. Also possible is
function like the mksorted from the slides like this (but the disadvantage is that the results
is less random, since it is monotonically increasing):

nodup :: [Int ]→ [Int ]
nodup [ ] = [ ]
nodup [x ] = [x ]
nodup (x : y : ys) = x : nodup ((x + 1 + abs y : ys))

Either of these gets you 2 points.
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4. The following multiple choice questions are each worth 5 points.

. . . /20 (i).c, (ii).a, (iii).d, (iv).b. Some explanations on (iii) and (iv) are given below.

The rest you can check for yourself in a ghci session.

(i) Someone tries to write a function revDigits :: Int → Int that “reverses the digits in an Int”;
so 123 is mapped onto 321. Which is the correct solution?

a. revDigits i = foldl (λds x → x : ds) "" (show i)

b. revDigits i = foldr (λx ds → ds ++[x ]) "" (show i)

c. revDigits i = revDigits ′ i 0
where revDigits ′ 0 r = r

revDigits ′ i r = revDigits ′ (i ‘div ‘ 10) (r ∗ 10 + i ‘mod ‘ 10)

d. revDigits i = revDigits ′ i 0
where revDigits ′ 0 r = r

revDigits ′ i r = revDigits ′ (i ‘mod ‘ 10) (r ∗ 10 + i ‘div ‘ 10)

(ii) What is the type of concat . concat?

a. [[[a ]] ]→ [a ]

b. [a ]→ [[a ]]→ [a ]

c. [[a ]]→ [[a ]]→ [[a ]]

d. none of the above

(iii) Given are the following two statements:

I The side effects possible because of IO make Haskell an impure language
False. Monads are Haskell’s way of dealing with IO in a way that is pure. The monads
prevent the programmer from being able to access the IO monads internal state, and from
duplicating the world

II Using seq can never make your program slower
Of course it can. The expression fib 20000 ‘seq ‘ 2 is really much slower to compute than
just returning 2.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false

(iv) Given the definition of strict function application $! from the slides, consider the following
two statements:

I snd $! (⊥1,⊥2) equals ⊥2

This is true, although having $! here does not really play a role, since the pair is already
in WHNF.

II length $! map ⊥ [1, 2] equals ⊥
This is incorrect. length does not need the values of the elements of the mapped list, so
the answer is simply 2.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false
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5. A heap is a data structure described by a data type quite similar to a search tree:

data Heap a = Top a (Heap a) (Heap a)
| Leaf

with the so called heap property that the a value in a Top node is larger than or equal to the
values in the roots of its child Heaps, which have this property themselves too. An example of a
heap is

aHeap = Top 10 (Top 7 Leaf
(Top 4 Leaf Leaf ))

(Top 3 (Top 2 Leaf Leaf )
Leaf )

(i) Write a function checkHeap ::Ord a ⇒ Heap a → Bool which returns True if its argument has
the required propery, and False otherwise. Hint: you may want to write a helper function
checkHeap′ :: Ord a ⇒ a → Heap a → Bool .

. . . /8 The tricky part here is that you cannot access the values of the children easily to

compare with. The solution below sends the value from the root to the children and makes
the comparison there.

checkHeap Leaf = True
checkHeap h@(Top a )
= checkHeap′ a h

where checkHeap′ f (Top c l r) = f > c
∧ checkHeap′ c l
∧ checkHeap′ c r

checkHeap′ Leaf = True
Having the Leaf case correctly handled (1pt), recursing both subtrees, on the right argu-
ments (2pts each), doing the right comparisons (3 pts)

(ii) Write a function getFromHeap :: Ord a ⇒ Heap a → Maybe (a,Heap a), which – provided
the heap is non-empty– returns the largest a value from its Heap a argument, together with
a Heap a containing the rest of the values of its Heap a argument, and Nothing if the Heap a
argument is a Leaf . Make sure the resulting Heap a again satisfies the heap property! Hint:
the new root of the heap is either the root of the left subtree or the root of the right subtree.

. . . /8

getFromHeap Leaf = Nothing
getFromHeap (Top a l r) = Just (a,mergeHeaps l r)
mergeHeaps Leaf r = r
mergeHeaps l Leaf = l
mergeHeaps l@(Top lv ll lr) r@(Top rv lr rr)
| lv > rv = Top lv (mergeHeaps ll lr) r
| otherwise = Top rv l (mergeHeaps lr rr)

The getFromHeap part gets you 3 points, reconstructing the heap after deleting the maxi-
mum gets you 5. Of these 5, the right recursive calls gives you 2 points, a correct comparison
1 points, constructing the right tree 2.
If you do not assume the heap to be a heap in the first place, reconstructing a heap becomes
much harder.
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6. Given the following definitions of reverse, and (++):

reverse :: [a ] → [a ]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++[x ]

(++) :: [a ]→ [a ]→ [a ]
[ ] ++ys = ys
(x : xs) ++ys = x : (xs ++ys),

(i) Prove by induction that xs = xs ++[ ]. Do not forget to explain every step in your proof!

. . . /5 This is part of 5.20 in the lecture notes.

We need to prove:
xs = xs ++[ ]. (1)

With induction on the structure of xs.
Base case:

[ ]
= [ ] ++[ ] {definition van (++)}.

Induction step:

x : xs
= x : (xs ++[ ]) {induction hypothesis}
= (x : xs) ++[ ] {definition of (++)}.

(ii) Prove by induction that reverse (xs ++ys) = reverse ys ++reverse xs. You may use the
result of part (i), and a Lemma that says that (xs ++ys) ++zs = xs ++(ys ++zs) in your
proof. Again, do not forget to explain every step in your proof!

. . . /13 Again with induction over the structure of xs.

Base case:

reverse ([ ] ++ys)
= reverse ys {definition van (++)}
= reverse ys ++[ ] {Exercise (i))}
= reverse ys ++reverse [ ] {definitie van reverse}.

Induction step:

reverse ((x : xs) ++ys)
= reverse (x : xs ++ys) {definition (++)}
= reverse (xs ++ys) ++[x ] {definition reverse}
= (reverse ys ++reverse xs) ++[x ] {induction hypothese}
= reverse ys ++(reverse xs ++[x ]) {Lemma)}
= reverse ys ++reverse (x : xs) {definitie van reverse}

Non-inductive proofs obtain no points, but if you have an equation in a non-inductive proof
that also is present above, then you get a point.
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