
EXAM FUNCTIONAL PROGRAMMING (WITH ANSWERS)
Tuesday the 1st of October 2013, 8.30 h. - 10.30 h.

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, circle what you think is the
best answer. Use the empty boxes under each question to write your answer and explanations in. Use
the empty paper provided with this exam only as scratch paper (kladpapier). At the end of the exam,
only hand in the filled-in exam paper. Answers will not only be judged for correctness, but also for
clarity and conciseness. A total of one hundred points can be obtained; divide by 10 to obtain your
grade. Good luck!

1. (i) What is the result of evaluating the following expression:

(foldr (−) 0 . map length) ["Rood", "Wit", "Blauw"]

. . . /8 map length results in [4, 3, 5] earning you 4 points. Passing it to foldr results in

4 − (3 − (5 − 0)) which equals 6. If you show the right expression and the right value you
get 4 more points. If you miscalculate the expression, but you have the right expression you
get 3 points. If you only give a number and it is wrong, then you get 0 points. If you give
the right answer but no explanation at all how you got it, you get 4 points.

(ii) The function nrOfPositives is defined as follows:

nrOfPositives = length . filter (>0)

Define this function with foldr by supplying the correct definitions of e and op, according to
the following recipe:

nrOfPositives = foldr op e
where

. . . /15 The implementation computes the number of positive integers in a list. For e there

is only one correct answer: e = 0. This gives you 5 points.
op can be implemented in very many ways. A rather explicit one is

op = λx r → if x > 0 then r + 1 else r
This earns you the other 10 points. If you, for example, interchange the role of x and r ,
then you get 7. Another good implementation of the above op is with sections:

op x | x > 0 = (1+)
| otherwise = id

Many students wrote (+0) instead of id . That is okay, too. This implementation has a lot
of room for small mistakes, since the section syntax is easy to get wrong.

2. Consider the following datatype for representing boolean expression (propositions), where variable
names consist of a single character:

data Prop = Cons Bool
| Vari Char
| Not Prop
| Prop : /\ : Prop
| Prop : \/ : Prop
| Prop : −>: Prop

(i) Give the value of type Prop that represents the proposition p→ (p ∨ q)

1

. . . /6 The fully correct answer is (Vari ’p’) : −>: ((Vari ’p’) : \/ : (Vari ’q’))

For the answer Cons True (which has the same logical meaning, but is not a representation
of the formula), you still get 3 points. Answers like True or Bool are completely wrong.
There are many ways to get the answer partly right. Basically, I counted the number of
correct kinds of tokens. Often made mistakes: not parenthesizing the or part, writing types
in the values, like Vari Char : −>: (note that although all Vari expressions really need to
have them as well, I did not subtract points for that).

(ii) Write a function vars :: Prop → [Char] that takes a proposition and finds all the variables
that occur in the proposition (you may choose to delete duplicates, or not).

. . . /14 A correct answer is

vars :: Prop → [Char]
vars (Cons) = []
vars (Vari c) = [c]
vars (Not p) = vars p
vars (p : /\ : q) = vars p ++vars q
vars (p : \/ : q) = vars p ++vars q
vars (p : −>: q) = vars p ++vars q

Forgetting the parentheses around some of the patterns costs 1 pt (not one each!). Typically
you get points for each case that you had right (and that includes not only the right hand
side, but also the left hand side).
Some people overabstracted writing

vars (p q) = vars p ++vars q
which they thought would cover all binary operators. Alas, Haskell does not allow this. The
penalty is not high in this case, because it still shows that you do understood the recursive
process.
Instead of patterns, you can also use a case expression. However, quite a few used guards
resulting in things like:

vars p | v ≡ Vari = v
| v ≡ (p : /\ : q) = vars p ++vars q

This is wrong. If you need to introduce new identifiers for parts of the matched pattern
never use guards. Guards are just boolean expressions. Of course, in this case you could
still get points for the correct right hand side (in the example v the right hand side is wrong,
but the case of : /\ : is right).
A number of students used an accumulating parameter. That is fine, too. But then vars p +
+vars q should become something like vars q (vars p acc) and not vars p acc ++vars q acc.
The latter duplicates variables much more than necessary, and although I did not ask
to delete duplicates, the latter implementation indicates that you do not understand the
principle of the accumulating parameter all that well.
Typical for this exercise is that students forget the Not and/or the Cons altogether. Another
frequently made mistake was that students wrote something like

vars (Prop p : /\ : Prop q) = vars p ++vars q
Remember that you typically do not see types show up inside Haskell code.
There were two students who actually deleted duplicates, and one did it incorrectly: as a
rule try not to do more than you must, unless it makes your life easier.
Generally, throughout this entire exercise and the next students tend to mix case: variables
start with capitals, and type variables as well. Try not to do this, as this suggests that you
do not know what you are doing. There is a major difference between prop and Prop. This
is one aspect where it pays off to be clear and precise in your writing.

(iii) On the next page, write an evaluator beval :: Prop → [(Char ,Bool)]→ Maybe Bool . It takes
a proposition and an environment env . The latter contains pairs of values, like (’p’,True),

2

that give values to variables. In order to compute the truth value of the proposition, you
must first verify that env has a truth value for every variable in that proposition (Hint: use
(ii)). If this is not the case, you should return Nothing . Otherwise you should return Just v
where v is the truth value computed for the proposition.

. . . /14 Again there are many possibilities here. This is one.

beval :: Prop → [(Char ,Bool)]→ Maybe Bool
beval p env =

if alldefined (vars p) env then Just (ceval p) else Nothing
where

alldefined [] env = True
alldefined (v : vs) env = case lookup v env of

Nothing → False
Just → alldefined vs env

ceval (Cons b) = b
ceval (Vari c) = fromJust (lookup c env)
ceval (Not p) = not (ceval p)
ceval (p : /\ : q) = ceval p ∧ ceval q
ceval (p : \/ : q) = ceval p ∨ ceval q
ceval (p : −>: q) = ceval (Not p) ∨ ceval q
}

It is okay to reuse functions like elem, and operators like (\\). It is also okay to verify
the alldefined property during the evaluation traversal. However, some students then forget
that a Maybe value is returned by the recursive calls, and that these need to be unpacked.
Some other often made mistakes: instead of verifying that each element of vars p is in a
first element of a pair of env , they do this the other way around. Many students forgot the
operators for or and and. A way out is then to use and [ceval p, ceval q]. This is okay
(albeit not very elegant). If you can’t remember what they are called, and it is easy to write
it down yourself, and do just that (in fact, a small number of students did it like that).
As with the previous exercise, the pattern matching is sometimes done in the guards.
There are many many ways in which to implement the definedness test (if done correctly
it gives you 4 points, the evaluation gives you 10). It was probably also the hardest thing
to get right without the ability to test the implementation, since there are many ways in
which you can subtly get it wrong.

3. (i) Assuming that the prelude does not provide you with a definition for function composition
(.), write your own. Also provide a type signature for (.) .

. . . /9 I was surprised to see so many wrong answers here. The type of

(.) | is | (b → c)→ (a → b)→ a → c
A correct type gives you 4 points, an incorrect one zero, unless I believed that you made a
honest typo.
The implementation varies, but not so much:

(.) f g x = f (g x)
is the simplest, but the following are also fine:

(f . g) x = f (g x) -- many forget the parentheses on the left

(.) f g = λx → f (g x)
and variants with local definitions.
A correct implementation gives you 5 points. You get none if it is incorrect, unless, again,
it looks like a simple typo.

(ii) Explain what it means that you can regard (.) as a function that takes 1, 2 or 3 parameters.
3

. . . /8 One aspect here that you should mention is that in Haskell every function takes only

one argument, and currying can be used to model functions of multiple arguments. This
gets you half the points.
If you then go on and explain concretely that the types of the arguments of (.) above have
type b → c, a → b and a, and/or that the type of (.) can for example be understood as
(b → c) → (a → b) → (a → c) which is suggestive of the case that you pass only the first
two arguments to return a function of type a → c, then you earn another 4 points.

(iii) Given the type signature sum :: [Int]→ Int , is the expression

if True then [sum, length] else [id]

type correct? If so, what is its type. If not, explain why not.

. . . /10 This was not an easy one for many. The expression is not type correct. The reason

is that the type of the then and else parts must correspond, but the type of the then part
is [Int] → Int , while that of the else part is a → a. Clearly, if we match the arguments,
a must be [Int], but then the result types can never match. Only if you also provide the
right reason, do you get all points.
Even if you give the wrong answer (or the right one, but not the right reason), you still get
five points if your answer shows that you can perform type inference, for example by saying
that while length has type [a]→ Int , the type of the then part is [Int]→ Int because that
is what sum demands.
Quite a few students came up with a type like Bool → Int or some such, because of the
boolean condition, and the fact that the functions can return an Int . But note that there
is no boolean argument anywhere, and that the function returns a list of functions. There
is no reason for these functions to be applied here; Haskell is a higher-order language.
Some students remarked that the else part is never reached, and then thought that lazy
evaluation would make it okay since the expression can only return a value of type [Int]→
Int . However, Haskell is strongly typed and the type inferencer will not perform a control
flow analysis to decide what is reachable and what is not. So whether a piece of code is
reachable or not, it must all be type correct. Note that laziness has nothing to do with this
issue, the same thing could be said of any strict language.

4. (i) Determine the type of map map. You should not just write down the type below, but also
explain how you arrived at that type (for example, in the way that this is done in the lecture
notes of this course).

. . . /16 The answer to this one can be found in the lecture notes. It is also allowed to

provide your own explanation of the correct type, which is [a → b] → [[a] → [b]] or any
consistent renaming thereof.
For providing only the type of map you get 2 points, for also providing another copy of
that type (with other type variables) you get an additional 3. Many students provided not
the type of map map, but the type of the first map. That cost them 4 points. If you only
provide the exact type, but no explanations, I subtracted 5. If you made a wrong match
(but substituted the results of the match correctly), you lose 4 points.

4

