FP 2005-2006, Eindtoets

April 19, 2006, 14.00-17.00

The exam consists of 4 multiple choice questions (1 point each) and three open questions (2 points each). Not answering a multiple choice question will give you 0.25 point. Hand in the second and third page, with choices made in the corresponding box and open questions answered.

1. Which of the following is a correct definition of inits?
(a) foldr $(\lambda x r \rightarrow[[]]: \operatorname{map}(x:) r)[[]]$
(b) foldr $(\lambda x r \rightarrow$ []:map $(x:) r$) [[]] CORRECT
(c) foldr $(\lambda x r \rightarrow$ map $(x:) r)[]$
(d) foldr $(\lambda x r \rightarrow \operatorname{map}(x:) r)$ [[]]
2. Which of the following is a correct definition of tails?
(a) map reverse.reverse.tails.reverse
(b) reverse.inits.map reverse.reverse
(c) reverse.map (inits.reverse).reverse
(d) map reverse.reverse.inits.reverse CORRECT
3. Which of the following is a correct definition of transpose?
(a) foldr (zipWith (+)) (repeat [])
(b) foldr (zipWith (:)) (repeat [[]])
(c) foldl (zipWith (+)) (repeat [])
(d) foldr (zipWith (:)) (repeat []) CORRECT
4. Which of the following is true?
(a) The expressions do return a is the same as return a. CORRECT
(b) Expressions of type $I O$ a cannot occur inside other expressions.
(c) Expressions of type IO a can only occur as a subexpression of expressions of type $I O b$ for a suitable b.
(d) The expression return (return a) can be replaced by return a.

With respect to alternative (c) notice that when we have:

```
ringBell :: IO ()
times action \(0=\) return ()
times action \(n=\) do action
    times action \((n-1)\)
```

that the expression times ringBell has a subexpression of type $I O()$ while its type is not of the form $I O$ ().
With respect to alternative (d) notice that when return a has type $I O$ a for some a, then return (return a) has type $I O\left(\begin{array}{ll}I O & a\end{array}\right)$. Since these types are different they will definitely not be the same.
5. Someone wants to compare search trees, which are defined as:

```
data SearchTree \(a=\) Branch (SearchTree a) a (SearchTree a)
    | Leaf
```

and requires the tree insert 3 (insert $5 t$) to be equal to insert 5 (insert $3 t$), i.e. two trees are the same if they contain the same elements irrespective of the order in which they were inserted.
(a) Write a function flattenTree :: SearchTree $a \rightarrow[a]$ which computes a list of all the values in the tree in increasing order, and does so in linear time.
(b) Use this function to define the overloaded functions \equiv and $\not \equiv$ fpr search trees.

We start with the straightfoward flattenTree, from now on called ft:

$$
\begin{array}{ll}
f t \text { Leaf } & =[] \\
f t(\text { Branch } l v r) & =f t l+(v: f t r)
\end{array}
$$

Unfortunately this solution may be expensive, so we may use the trick with an accumulation parameter:

```
\(f t^{\prime \prime}::\) SearchTree \(a \rightarrow[a] \rightarrow[a]\)
\(f t^{\prime}\) Leaf rest \(=\) rest
\(f t^{\prime}\left(\right.\) Branch l v r) rest \(=f t^{\prime} l\left(v: f t^{\prime} r\right.\) rest \()\)
\(f t t \quad=f t^{\prime} t[]\)
```

Another way of writing essentially the same is to use the efficient way for concatenating lists:

$$
\begin{aligned}
& f t^{\prime \prime}:: \text { SearchTree } a \rightarrow([a] \rightarrow[a]) \\
& f t^{\prime \prime} \text { Leaf }=i d \\
& f t^{\prime \prime}(\text { Branch l v } r)=f t^{\prime \prime} l .(v:) . f t^{\prime \prime} r \\
& f t t=\left(f t^{\prime \prime} t\right)[]
\end{aligned}
$$

An elegant solution given by two people is:

$$
\begin{array}{lll}
f t \text { Leaf } & & =[] \\
f t(\text { Branch Leaf } & v r & =v: f t r \\
f t(\text { Branch }(\text { Branch } l & v & r) \\
\hline
\end{array}
$$

We can now use an instance declaration to get the required eauality functions for bags that are represented by SearchTree's:

```
instance \(E q a \Rightarrow E q(\) SearchTree \(a)\)
    \(a \equiv b=f t a \equiv f t b\)
```

Note that the default definition of $\not \equiv$ in the class definition takes care of the $\not \equiv$ case. Furthermore many people have forgotten the $E q a$ part of the instance definition, or have just writte instance $E q$ SearchTree where....!

Many, many people still write code like:

```
ft \(l v r=l: v: r\)
ft (SearchTree l) \(v(\) SearchTree \(r)=f t(\) SearchTree \(a) \ldots \quad\)-- find all the mistakes!!
```

In the next test such incorrect usage of syntax, and mixing up : and $\#$ will no longer be tolerated. I accept that you have difficulty in inventing smart algorithms, but at least you should by now know how to corrently use patterns and how to write simple type correct code.
6. The function numberOfCombinations : [Int] \rightarrow Int \rightarrow Int computes the number of combinations in which we can select elements from the first list that sum up to the second argument. You may assume that all the elements in the first list are different and positive. Elements may be selected more than once. Zo is numberofCombinations $[5,10,20] 40$ gelijk aan 9 , want dat is de lengte van de lijst $[[5,5,5,5,5,5,5,5],[5,5,5,5,5,5,10]$, $[5,5,5,5,10,10],[5,5,5,5,20],[5,5,10,10,10],[5,5,10,20],[10,10,10,10],[10,10,20],[20,20]$].
(a) Define the function numberOfCombinations
(b) Redefine the function in such a way that it uses arrays to remember common calls, and the overall complexity becomes linear in the second argument, assuming that indexing takes constant time.

Solution:

$$
\begin{array}{rlrl}
\text { noc_0 } & & =1 & -- \text { Note that this should come before the next alternative!! } \\
\text { noc }[]- & & =0 \\
\text { noc }(x: x s) n \mid n<0 & & =0 \\
& \text { otherwise } & =\operatorname{noc}(x: x s)(n-x)+\text { noc xs } n
\end{array}
$$

Notice that in this code there may be many calls to the function noc with the same arguments, so we decide to remember them using arrays:

```
module TestTest where
import Array
moc \(::[\) Int \(] \rightarrow\) Int \(\rightarrow\) Int
moc \(l n=\)
    let last \(=\) length \(l\)
        \(l v=\operatorname{array}(1\), last \()[(i, l!!(i-1)) \mid i \leftarrow[1 \ldots\) last \(]]\)
        res :: Array (Int, Int) Int
        res \(=\operatorname{array}((0,0),(n\), last \())\)
            \(([((0, i), 1) \quad \mid i \leftarrow[0 . . l a s t]]+\)
            \([((j, 0), 0) \quad \mid j \leftarrow[1 \ldots n]]+\)
            \([((j, i), r e s!(j, i-1)+\) if \(j \geqslant l v!i\)
                                    then res ! \((j-l v!i, i)\)
```

$$
\text { else } 0) \mid j \leftarrow[1 \ldots n], i \leftarrow[1 \ldots \text { last }]]
$$

$$
\begin{gathered}
\left(\begin{array}{l}
\text { in res }!(n, \text { last }) \\
\operatorname{main}=\operatorname{moc}[5,10,20] 40
\end{array}\right.
\end{gathered}
$$

Since almost no solution coming close to this has been given this part has not been taken into account for the final mark. However bonusses were given for those who at least tried.
7. Give an inductive proof of the fact that map $f(x s+y s) \equiv \operatorname{map} f x s+\operatorname{map} f y s$. See lecture notes page 167.

Name:

Student nr:

Bachelor program: Inf/CKI/...

Answers to the mutiple choice questions:

1	2	3	4

QUESTION 5, the functions flattenTree and the instance of $E q$:
(see other side/ zie andere zijde)

QUESTION 6, the functions numberOfCombinations:

Name:

Student nr:

QUESTION 7, the proof of map $f(x s+y s) \equiv \operatorname{map} f x s+\operatorname{map} f y s$
vervolg 7

