- You have from 13:00 until 17:00 to solve the problems, so four hours total.
- Raise your hand if you have a question.
- Calculators are not allowed.
- You can score between 0 and 10 points on each problem.
- Be explicit when you use a theorem. Give sources for obscure theorems.
- Use a separate sheet for each problem.
- Clearly write DRAFT on any draft sheet.
- You can write your solutions in English or in Dutch.

Opgave 1 Determine a natural number n such that for all $k=1,2, \ldots, 9$ the number $k n$ contains all digits $0,1, \ldots, 9$ at least once in its decimal expansion. You do not need to justify your answer. Your score is dependent on the number of digits in your number. Each value of $k=1, \ldots, 9$ for which $k n$ does not contain all digits $0,1, \ldots, 9$ loses you 1 point. The participant with the smallest number gets 1 bonus point.

Number of digits	$100-300$	$60-99$	$40-59$	$30-39$	≤ 29
Score	5	6	7	8	9

Opgave 2 Let $n \in \mathbb{N}$. Show that there exists a value $\alpha_{n} \in(0, \infty)$ with the following property. For each $x_{1}, \ldots, x_{k} \in[0,1]^{n}$ there exists $x \in[0,1]^{n}$ such that the average distance from x to x_{i} for $i=1, \ldots, k$ is equal to α_{n}.

Opgave 3 There are $n+1$ bins in a row with s stones in the first bin. In a move, you chose a bin with $b \geq 1$ stones and you move one of the stones at most b bins. The goal is to get all the stones in the last bin.
(a) [5pt] Show that you need at least $\frac{n}{1}+\frac{n}{2}+\ldots+\frac{n}{s}$ moves.
(b) [5pt] For $s=k(k+1) / 2$ show that $s+(n-1) k$ moves suffices.

Opgave 4 For which strictly monotonically increasing $f: \mathbb{N} \rightarrow \mathbb{N}$ does there exist a strictly monotonically increasing $g: \mathbb{N} \rightarrow \mathbb{N}$ with the following two properties?
(i) For all $k \geq 0$ we have for n large enough that $f^{k}(n) \leq g(n) .{ }^{1}$
(ii) The value $f(g(n))-g(f(n))$ can become arbitrarily large.

Opgave 5 Let $c>1$. Show that there exists $r>1$ such that $\lim _{n \rightarrow \infty}{ }^{n+1} r /{ }^{n} c \in(0, \infty) \cdot{ }^{2}$
Opgave 6 For $k \geq 1$, define $f_{k}: \mathbb{N} \rightarrow \mathbb{N}$ by $f_{k}(n)=1^{k}+2^{k}+\ldots+n^{k}$. Determine for which prime powers p^{a} and for which $k \geq 1$ the function f_{k} is surjective modulo p^{a}.

[^0]
[^0]: ${ }^{1}$ We write $f^{k}(n)$ for the result after $k \geq 0$ applications of f on n.
 ${ }^{2}$ We write ${ }^{n} x=x^{n-1} x$ with the basis ${ }^{0} x=1$. So ${ }^{n} x=x \uparrow \uparrow n$ is tetration, repeated exponentiation.

