
• There are 4 hours available for the problems.

• Each problem is worth 10 points.

• Be clear when using a theorem. When you are using an
obscure theorem, cite a source.

• Use a different sheet for each problem.

• Clearly write DRAFT on any draft page you hand in.

MOAWOA :: SOLUTIONS

May 13, 2016

Problem 1. An invertible 2× 2-matrix M with real entries is called a MOAWOA-matrix if its
inverse M−1 can be obtained by permuting the entries of M . Show that if M is a MOAWOA-
matrix, then so is M2.

Proposed by Merlijn Staps (Universiteit Utrecht).

Solution. Write M = ( a bc d ) and let D = detM . Then we have M−1 = 1
D

(
d −b
−c a

)
. Now,

suppose M is a MOAWOA-matrix. Then M−1 can be obtained by permuting the entries of M .
Therefore, we must have |a|+ |b|+ |c|+ |d| = | d

D
|+ |−b

D
|+ |−c

D
|+ | a

D
| = |a|+|b|+|c|+|d|

|D| . Since M is

invertible, we have |a|+ |b|+ |c|+ |d| > 0. It follows that |D| = 1, hence D = ±1. First suppose
D = 1. Then we have [a, b, c, d] = [d,−b,−c, a], where we use square brackets to denote multi-
sets. We find [b, c] = [−b,−c], which implies that b = −c. We therefore have M =

(
a b
−b d

)
with

ad + b2 = 1. Conversely, any matrix of this form is a MOAWOA-matrix. In particular, since

det(M2) = 1 and M2 =
(

a2−b2 ab+bd
−ba−bd −b2+d2

)
the matrix M2 is a MOAWOA-matrix. Now suppose

D = −1. Then we have [a, b, c, d] = [−d, b, c,−a]. It now follows that a = −d. Therefore,

M = ( a b
c −a ). We find M2 =

(
a2+bc 0

0 a2+bc

)
= ( 1 0

0 1 ) since a2 + bc = − detM = 1. Clearly, M2 is

a MOAWOA-matrix. �

Problem 2. Suppose I and J are (real) open intervals of finite positive length, each interval
not containing the other. Show that there exists a λ 6= 0 such that x 7→ eλx maps I and J to
intervals of equal length if and only if I and J have different lengths.

Proposed by Leslie Molag (Katholieke Universiteit Leuven).

Solution. Denote the endpoints of I and J by a < b and c < d respectively. Without loss of
generality d > b and c > a (since each interval does not contain the other). Let us define the
function

f(λ) =

{ d−c
b−a if λ = 0,

edλ−ecλ
ebλ−eaλ otherwise.

Note that I and J being mapped to intervals of equal length by x 7→ eλx is equivalent to f
attaining the value 1 in some λ 6= 0. The function f is continuous by construction. We notice
that f(x) → ∞ as x → ∞ and f(x) → 0 as x → −∞. When we assume that I and J have
distinct lengths we also know that f(0) 6= 1, thus by the intermediate value theorem there exists
an λ 6= 0 such that f(λ) = 1. When I and J have the same length we have f(λ) = e(c−a)λ,
which does not equal 1 for any λ 6= 0. �
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Problem 3. Consider n people that stand in a circle. Initially, each of them holds a red and a
blue ball. In a turn, each person gives one of his balls to his right neighbor and his other ball
to his left neighbor. Does there exist a sequence of turns (starting from the initial situation)
such that every possible color distribution of the balls occurs exactly once

(a) if n = 2016?

(b) if n = 2015?

Based on a proposal by Wouter Zomervrucht (Freie Universität Berlin).

Solution. Number the people 1, . . . , n in circular order. We denote by [a1a2 · · · an] the color
distribution where person i has precisely ai blue balls (and 2 − ai red balls). For a word w
consisting of the letters 0, 1 and 2 we write wk for the word that is obtained by concatenating
k copies of w.

For (a), the answer is “no”. Consider the color distributions [(20)1008] and [(02)1008]. Note that
these distributions can only be reached from each other. This means that they cannot occur in
a sequence of turns that starts with the initial distribution.

For (b), the answer is also “no”. Consider the color distribution C = [(2200)503210]. The only
possible neighbors of this color distribution in a sequence of turns are [(1)2012012] and the initial
distribution. Suppose a sequence of turns exists in which each distribution occurs exactly once.
Then C can occur only as the second or the last distribution in this sequence. However, the
same holds for all cyclic permutations of C, of which there are 2015. This is a contradiction. �

Problem 4. We consider sequences a0, a1, a2, . . . of real numbers that satisfy

an = 4an−1(1− an−1)

for all positive integers n. How many such sequences satisfy a2016 = a0?

Proposed by Merlijn Staps (Universiteit Utrecht).

Solution. There are 22016 such sequences. If a0 < 0 we have a1 = 4a0(1 − a0) < a0 be-
cause 4(1 − a0) > 1. It then follows that a2016 < a2015 < · · · < a1 < a0, so we cannot have
a2016 = a0. If a0 > 1 we have a1 = 4a0(1 − a0) < 0 and it follows that a2016 < 0 < a0.
Hence if a2016 = a0 we must have a0 ∈ [0, 1]. This means that we can write a0 = sin2(α) for
some α ∈ [0, π

2
]. If an−1 = sin2(β) we have an = 4an−1(1 − an−1) = 4 sin2(β)(1 − sin2(β)) =

4 sin2(β) cos2(β) = (2 sin(β) cos(β))2 = sin2(2β). By induction, it follows that an = sin2(2nα)
for all n ≥ 0. In particular, we have a2016 = sin2(22016α). From a0 = a2016 it now follows that
22016α = ±α + kπ where k is an integer. This means that α = π · k

22016±1 . For α = kπ
22016−1 we

must have 0 ≤ k ≤ 22016−1
2

= 22015 − 1
2
, which is satisfied for 22015 values of k. For α = kπ

22016+1

we must have 0 ≤ k ≤ 22016+1
2

= 22015 + 1
2
, which is satisfied for 22015 + 1 values of k. Because

22016 + 1 and 22016 − 1 are coprime only the value α = 0 is counted twice, so in total there are
22015 +(22015 +1)−1 = 22016 possible values for α. This means that there are also 22016 possible
sequences. �
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Problem 5. We are given N weights, with masses 1 kg, 2 kg, . . . , N kg. We want to select
at least two of these weights, such that their total mass equals the average mass of the other
weights. Show that this is possible if and only if N + 1 is a square.

Proposed by Arne Smeets (Katholieke Universiteit Leuven).

Solution. Suppose we can select weights such that the condition holds. Let k ≥ 2 be
the number of selected weights and let S be the sum of their masses. Then we must have

N ≥ S ≥ 1 + 2 + . . . + k = k(k+1)
2

. Furthermore, we have S =
N(N+1)

2
−S

N−k , which rewrites to
2S(N − k + 1) = N(N + 1). It follows that N − k + 1 divides N(N + 1), hence it also divides

N(N + 1)− (N + k)(N − k + 1) = k(k − 1).

We have k(k − 1) ≤ 2N − 2k < 2(N − k + 1), so we must have N − k + 1 = k(k − 1) and
N + 1 = k2.
Conversely, if N + 1 = k2 then we can select the weights with masses 1 kg, . . . , k kg. �

Problem 6. Let k be a positive integer. We consider all possible football matches in which
2k goals are scored in total. Show that the number of such matches in which the end re-
sult is a draw equals the number of such matches in which the home team is never behind.
(By a “football match” we mean the set of all intermediate scores that occur during the match.)

Proposed by Raymond van Bommel and Julian Lyczak (Universiteit Leiden).

Solution. Define B(x, y) =
(
x+y
x

)
−
(
x+y
x+1

)
for all integers x, y ≥ 0 (if m > n, we let

(
n
m

)
= 0).

Now we see for all x ≥ 0 that B(x, x+ 1) =
(
2x+1
x

)
−
(
2x+1
x+1

)
= 0 and B(x, 0) =

(
x
x

)
−
(
x
x+1

)
= 1.

For all 1 ≤ y ≤ x we find that

B(x, y) =

(
x+ y

x

)
−
(
x+ y

x+ 1

)
=

(
x+ y − 1

x− 1

)
+

(
x+ y − 1

x

)
−
(
x+ y − 1

x

)
−
(
x+ y − 1

x+ 1

)
= B(x− 1, y) +B(x, y − 1).

From this recursion we now see that for 0 ≤ y ≤ x, the number B(x, y) also indicates the
number of matches that ends in (x, y) and for which the home team is never behind. The
number of these matches in which 2k goals are scored is therefore

k∑
i=0

B(k + i, k − i) =
k∑
i=0

[(
2k

k + i

)
−
(

2k

k + i+ 1

)]
=

(
2k

k

)
−
(

2k

2k + 1

)
=

(
2k

k

)
,

which is equal to the number of matches with 2k goals that end in a draw. �

Alternative solution 1. We represent possible matches by lattice paths. A goal for the
home team is represented by a step in northeast direction, whereas a goal for the away team
is represented by a step in southeast direction. The height of a certain point in the path is
defined as the difference between the number of steps in northeast direction and the number of
steps in southeast direction until that point. The height of the last point of the path is called
the path height. The depth of a path is defined as the lowest height that occurs.
We will construct a bijection between the collection Gn of paths with length 2n and path height
0 and the collection Bn of paths with length 2n with depth 0. Consider a path in Gn with
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depth −d ≤ 0. Let P be the last point for which height −d occurs. We now reverse the order
of the path before P and leave the remainder of the path unchanged. This yields a new path,
of which we claim that it is an element of Bn. Indeed, the reversed part has nonnegative height
everywhere and has a path height of d. The second part has height at least d everywhere. We
observe that the obtained path has 2n steps and height 0, so it is in Bn. Furthermore, we note
that the path has final height 2d.
Conversely, a path in Bn has height 2h for some h ≥ 0. The point P can now be found as the
last point for which the path has height h. By reversing the order of the path prior to this
point, we obtain the inverse of the construction outlined above. Therefore, the construction
yields a bijection between Bn and Gn.
It follows that the number of matches |Gk| that end in a draw is equal to the number of matches
|Bk| in which the home team is never behind. �

Alternative solution 2. The number of matches for which the end result is a draw equals(
2k
k

)
. The number of matches for which the home team is never behind can be counted by

counting paths in Z2 that consist of steps north and east. Let fn be the number of such paths
that start in the origin, never rise above the diagonal y = x and contain 2n steps in total. Then
it suffices to show that fn =

(
2n
n

)
. By removing the last step of such a path and replacing it

by an initial step east we obtain a path with 2n steps that stays strictly below the diagonal.
Therefore, there are fn

2
paths of 2n steps that stay strictly below the diagonal. Similarly, there

are fn
2

paths of 2n steps that stay strictly above the diagonal. We conclude that there are
fn
2

+ fn
2

= fn paths of 2n steps that only touch the diagonal at the origin.

For |x| < 1
4

we have 1√
1−4x =

∑
k≥0
(
2k
k

)
xk. It follows that

∑n
k=0

(
2k
k

)(
2n−2k
n−k

)
is the n-th coeffi-

cient of
(

1√
1−4x

)2
, which equals 4n. We obtain the identity 4n =

∑n
k=0

(
2k
k

)(
2n−2k
n−k

)
for all n ≥ 0.

It now suffices to prove that we also have 4n =
∑n

k=0

(
2k
k

)
fn−k since this recursion uniquely

determines the sequence (fn). The left hand side counts lattice paths consisting of 2n steps.
The summand for k on the right counts the number of such paths that pass through (k, k) but
no higher point on the diagonal. The proof is complete. �

Remark. By combining the two alternative solutions, one obtains a combinatorial proof of the
identity 4n =

∑n
k=0

(
2k
k

)(
2n−2k
n−k

)
.

4


