- There are 4 hours available for the problems.
- Each problem is worth 10 points.
- Be clear when using a theorem. When you are using an obscure theorem, cite a source.
- Use a different sheet for each problem.
- Clearly write DRAFT on any draft page you hand in.

MOAWOA

May 4, 2018

Problem 1. Determine all sequences $(a_1, a_2, \ldots, a_{2018})$ of positive integers such that

- (i) $a_1 + a_2 + \ldots + a_{2018} = 3 \cdot 2018;$
- (ii) the sum of consecutive a_i is never a power of 2. (In particular, none of the a_i is a power of 2.)

(A power of 2 is a number of the form 2^k with $k \ge 1$ an integer.)

Problem 2. Let k > 1 be an integer. We list all k-element subsets of $\{1, 2, ..., 2k - 1\}$ and in each of these subsets we color one element red and one (not necessarily distinct) element blue. Our goal is to assign the colors in such a way that whenever A and B are subsets among our list with $|A \cap B| = \ell$, the red element in A differs from the blue element in B. Is this always possible

- (a) if $\ell = 1$?
- (b) if $\ell = 2?$

Problem 3. A real $n \times n$ -matrix $A = (A_{ij})_{i,j=1}^n$ satisfies $A_{ii} = 1$ for $1 \le i \le n$ and $A_{ij} + A_{ji} = 1$ for $1 \le i < j \le n$. Show that det A > 0.

Problem 4. Does there exist a smooth function $f : \mathbb{R} \to \mathbb{R}$ with the property that for all non-negative integers n the number of roots of $f^{(n+1)}$ is (strictly) greater than the number of roots of $f^{(n)}$?

Problem 5. We sample a random permutation σ of the numbers 1, 2, ..., n, uniformly from the set of all n! permutations. For a set $A \subset \{1, 2, ..., n\}$ we define the event

 $X_A = \{ \text{ all elements of } A \text{ belong to the same cycle of } \sigma \}.$

Show that for any two sets S and T with at least 2 elements, the events X_S and X_T are positively correlated.

Problem 6. Determine the smallest constant C > 0 with the following property: if $n \ge 4$ is a positive integer, then there exist positive integers a, b, c and d such that a + b + c + d = n and $lcm(a, b, c, d) \le Cn$.

