- There are 4 hours available for the problems.
- Each problem is worth 10 points.
- Be clear when using a theorem. When you are using an obscure theorem, cite a source.
- Use a different sheet for each problem.
- Clearly write DRAFT on any draft page you hand in.

MOAWOA

May 4, 2018

Problem 1. Determine all sequences $\left(a_{1}, a_{2}, \ldots, a_{2018}\right)$ of positive integers such that
(i) $a_{1}+a_{2}+\ldots+a_{2018}=3 \cdot 2018$;
(ii) the sum of consecutive a_{i} is never a power of 2. (In particular, none of the a_{i} is a power of 2 .)
(A power of 2 is a number of the form 2^{k} with $k \geq 1$ an integer.)

Problem 2. Let $k>1$ be an integer. We list all k-element subsets of $\{1,2, \ldots, 2 k-1\}$ and in each of these subsets we color one element red and one (not necessarily distinct) element blue. Our goal is to assign the colors in such a way that whenever A and B are subsets among our list with $|A \cap B|=\ell$, the red element in A differs from the blue element in B. Is this always possible
(a) if $\ell=1$?
(b) if $\ell=2$?

Problem 3. A real $n \times n$-matrix $A=\left(A_{i j}\right)_{i, j=1}^{n}$ satisfies $A_{i i}=1$ for $1 \leq i \leq n$ and $A_{i j}+A_{j i}=1$ for $1 \leq i<j \leq n$. Show that $\operatorname{det} A>0$.

Problem 4. Does there exist a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property that for all non-negative integers n the number of roots of $f^{(n+1)}$ is (strictly) greater than the number of roots of $f^{(n)}$?

Problem 5. We sample a random permutation σ of the numbers $1,2, \ldots, n$, uniformly from the set of all n ! permutations. For a set $A \subset\{1,2, \ldots, n\}$ we define the event

$$
X_{A}=\{\text { all elements of } A \text { belong to the same cycle of } \sigma\} .
$$

Show that for any two sets S and T with at least 2 elements, the events X_{S} and X_{T} are positively correlated.

Problem 6. Determine the smallest constant $C>0$ with the following property: if $n \geq 4$ is a positive integer, then there exist positive integers a, b, c and d such that $a+b+c+d=n$ and $\operatorname{lcm}(a, b, c, d) \leq C n$.

