
• There are 4 hours available for the problems.

• Each problem is worth 10 points.

• Be clear when using a theorem. When you are using an
obscure theorem, cite a source.

• Use a different sheet for each problem.

• Clearly write DRAFT on any draft page you hand in.

MOAWOA :: SOLUTIONS

May 4, 2018

Problem 1. Determine all sequences (a1, a2, . . . , a2018) of positive integers such that

(i) a1 + a2 + . . .+ a2018 = 3 · 2018;

(ii) the sum of consecutive ai is never a power of 2. (In particular, none of the ai is a power
of 2.)

(A power of 2 is a number of the form 2k with k ≥ 1 an integer.)

Proposed by Merlijn Staps.

Solution. There are three sequences possible: (3, 3, . . . , 3), (1, 5, 1, 5, . . . , 1, 5), and (5, 1, 5, 1,
. . . , 5, 1). We first show that these are valid. Clearly all three sequences satisfy (i). The first
sequence satisfies (ii) because the sum of consecutive terms is always a multiple of 3. For the
other two sequences (ii) follows from the fact that the sum of consecutive terms is either odd
(if we sum an odd number of terms) or a multiple of 3 (if we sum an even number of terms),
hence never a power of 2.
We now prove that there can be no other valid sequences. First, we note that a2i−1 +a2i cannot
be equal to 2 (a power of 2), 3 (then one of them would be 2, hence a power of 2), 4 (a power of
2) or 5 (then one of them would be 2 or 4, hence a power of 2). It follows that a2i−1 + a2i ≥ 6
for all i. By summing this inequality we obtain

3 · 2018 =
2018∑
i=1

ai =
1009∑
i=1

(a2i−1 + a2i) ≥
1009∑
i=1

6 = 6 · 1009,

meaning that there should be equality in each inequality. We conclude that a2i−1 + a2i = 6 for
i = 1, 2, . . . , 1009, which implies that (a2i−1, a2i) should be (3, 3), (1, 5), or (5, 1). Suppose the
pair (3, 3) occurs at least once. Because a 3 cannot occur adjacent to a 1 or a 5 in the sequence
(both 3 + 1 and 3 + 5 are powers of 2), it then follows that ai = 3 for all i (the first solution).
If not, each pair is equal to (1, 5) or (5, 1). Because there cannot be two consecutive ones in
the sequence, the sequence must be of the form

1, 5, 1, 5, . . . 1, 5︸ ︷︷ ︸
p

, 5, 1, 5, 1, . . . 5, 1︸ ︷︷ ︸
q

where p+ q = 1009. If p and q are both positive then the sequence contains either 5, 5, 1, 5 (if
q ≥ 2) or 5, 1, 5, 5 (if p ≥ 2) so then there are consecutive terms summing to 16. This contra-
diction shows that we must have p = 0 or q = 0, leaving us with the second and third solution. �
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Problem 2. Let k > 1 be an integer. We list all k-element subsets of {1, 2, . . . , 2k− 1} and in
each of these subsets we color one element red and one (not necessarily distinct) element blue.
We say our assignment of colors is nice if whenever A and B are subsets among our list with
|A ∩B| = `, the red element in A differs from the blue element in B. Does there always exists
a nice assignment of colors

(a) if ` = 1?

(b) if ` = 2?

Proposed by Stijn Cambie.

Solution.

(a) Yes. In each set A we color the minimal i such that A contains both i and i+ 1 in both
red and blue (where we read i+ 1 as 1 if i = 2k − 1). Note that such an i always exists,
because A contains more than half of the elements of {1, 2, . . . , 2k−1}. If the red element
in A equals the blue element in B (say both equal to i), then both A and B contain i
and i+ 1, so we cannot have |A ∩B| = 1. �

(b) Yes. In each set we color the smallest element red and the largest element blue. Suppose
|A ∩ B| = 2; then there are a < b that are contained in both A and B. Now the red
element in A is at most a, whereas the blue element in B is at least b, so these numbers
cannot be equal. �

Problem 3. A real n×n-matrix A = (Aij)
n
i,j=1 satisfies Aii = 1 for 1 ≤ i ≤ n and Aij +Aji = 1

for 1 ≤ i < j ≤ n. Show that detA > 0.

Proposed by Daniël Kroes.

Solution. Note that the determinant of A equals the product of its eigenvalues. Since the
non-real eigenvalues come in pairs (λ, λ) whose product is |λ|2 > 0, it suffices to show that the
product of the real eigenvalues of A is positive. We will show that in fact every real eigenvalue
is positive.
Let r be a real eigenvalue of A with corresponding eigenvector v 6= 0. Note that A+AT = Jn+In,
where Jn is an n× n-matrix with all entries equal to 1. We obtain

vT (A+ AT )v = vTJnv + vT Inv = (vT j)2 + |v|2 > 0

where j = (1, 1, . . . , 1)t. On the other hand, we have

vT (A+ AT )v = vTAv + vTATv = vT rv + (rv)Tv = 2r|v|2

Since |v|2 is positive, it follows that r is positive as well. �

Problem 4. Does there exist a smooth function f : R → R with the property that for all
non-negative integers n the number of roots of f (n+1) is (strictly) greater than the number of
roots of f (n)?

Proposed by Leslie Molag.

Solution. The answer is yes. An example is given by f(x) = ep(x), where p is a polynomial with
even degree and negative leading coefficient. In this case f (n) = qnf , where (qn) is a sequence
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of polynomials of strictly increasing degrees. By the mean value theorem f (n+1) has a root
between any two consecutive roots of f (n). Hence the number of roots of f (n+1) is at least one
less then the number of roots of f (n). Furthermore, note that by our choice of p we know that
f and any of its derivatives tend to 0 as |x| → ∞. Denote by a and b the smallest and largest
root of f (n) respectively. Since f (n) approaches 0 as |x| → ∞ it must attain extremal values at
some points A ∈ (−∞, a] and B ∈ [b,∞). This implies that f (n+1)(A) = f (n+1)(B) = 0 and we
conclude that f (n+1) has strictly more roots than f (n). �

Remark. For p(x) = −x2/2 we obtain the Hermite polynomials. In this case f (n) has exactly
n roots.

Problem 5. We sample a random permutation σ of the numbers 1, 2, . . . , n, uniformly from
the set of all n! permutations. For a set A ⊂ {1, 2, . . . , n} we define the event

XA = { all elements of A belong to the same cycle of σ } .

Show that for any two sets S and T with at least 2 elements, the events XS and XT are posi-
tively correlated.

Proposed by Harry Smit and Merlijn Staps.

Solution. We first show that P(XA) = |A|−1 for any A. Without loss of generality we assume
that A is of the form {1, 2, . . . , k}. A random permutation σ of 1, 2, . . . , n can be constructed
as follows:

• Choose σ(1) uniformly from {1, 2, . . . , n}, then choose σ(σ(1)) uniformly from the remai-
ning numbers, then choose σ(σ(σ(1))) uniformly from the remaning numbers, etcetera.
Continue until 1 is chosen and the cycle containing 1 is determined.

• Choose a random permutation of the remaining numbers.

The probability that 1, 2, . . . , k are all in the same cycle (the cycle containing 1), is the
probability that in the first step we select each of 2, 3, . . . , k before we select 1. By symmetry,
this happens with probability k−1 = |A|−1.
We now turn to the problem statement. Note that XS ∩XT ⊃ XS∪T , hence

P(XS ∩XT ) ≥ P(XS∪T ) =
1

|S ∪ T |
≥ 1

|S|+ |T |
≥ 1

|S||T |
= P(XS)P(XT ),

where the last inequality follows from (|S| − 1)(|T | − 1) ≥ 1. It now suffices to show that we
cannot have equality everywhere.

• If S and T are disjoint, we have P(XS ∩XT \XS∪T ) > 0 because with positive probability
there exists a cycle containing all elements of S and another cycle containing all elements
of T . This means the first inequality is strict.

• If S and T are not disjoint, we have |S|+|T | > |S∪T |, meaning that the second inequality
is strict.

We conclude that at least one of the first two inequalities is strict. This means that P(XS ∩
XT ) > P(XS)P(XT ), hence XS and XT are positively correlated. �
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Problem 6. Determine the smallest constant C > 0 with the following property: if n ≥ 4 is a
positive integer, then there exist positive integers a, b, c and d such that a+ b+ c+ d = n and
lcm(a, b, c, d) ≤ Cn.

Proposed by Merlijn Staps.

Solution. The smallest such C is C = 1
2
.

We first show C = 1
2

has the desired property. If n = 2k with k ≥ 2 is even we take (a, b, c, d) =
(1, 1, k − 1, k − 1) with a + b + c + d = 2k = n and lcm(a, b, c, d) = k − 1 < k = Cn.
If n = 4k + 1 we choose (a, b, c, d) = (1, k, k, 2k) with a + b + c + d = 4k + 1 = n and
lcm(a, b, c, d) = 2k < 4k+1

2
= Cn. Finally, if n = 4k + 3 we choose (a, b, c, d) = (1, 2, 2k, 2k)

with a+ b+ c+ d = 4k+ 3 = n and lcm(a, b, c, d) = 2k < 4k+3
2

= Cn. We conclude that C = 1
2

works (with the inequality being strict).
Next we prove that C < 1

2
do not have the required property. Take such C and let N ≥ 5

be a natural number satisfying C < 1
2
− 1

N
. By Dirichlet’s theorem on primes in arithmetic

progressions, there exists a prime n such that n ≡ −1 mod N !. We will show that if a + b +
c + d = n we always have lcm(a, b, c, d) ≥ (1

2
− 1

N
)n > Cn. Indeed, let L = lcm(a, b, c, d). If

L ≥ n
2

then clearly L ≥ (1
2
− 1

N
)n, so suppose L < n

2
. Without loss of generality we assume

that a ≤ b ≤ c ≤ d. Then it follows that d ≤ L < n
2
≤ 4d

2
= 2d, so since L is a multiple of d we

must have L = d. It follows that a, b and c divide d. From a ≤ b ≤ c ≤ d < n
2

we have c = d
2

of
c = d, because otherwise a+ b+ c+d < n. If c = d

2
we similarly find b = d

3
or b = d

2
. In the first

case, we have a = d
3

(hence 13d = 6n), a = d
4

(hence 12n = 25d), or a = d
5

(hence 30n = 61d).
We find that n is divisible by a prime at most 61, which is a contradiction because n is a prime
that is at least 5! − 1 = 119. So b = d

3
is impossible. If b = d

2
we find n = 2d + a where a | d.

From a | n it now follows that a = 1 (n is prime). Since d is even (otherwise b would not be
an integer) we find n ≡ 1 mod 4, contradiction. We have now excluded c = d

2
, so the case

c = d remains. Note that in this case gcd(a, b) = 1, because gcd(a, b) divides n = 2d + a + b.
Therefore we have ab | d. We claim that b ≤ 2d

N
. If not, we would have b = d

k
with 2k < N , and

from ab ≤ d it follows that a ≤ k. Now we find kn = ka+ kb+ kc+ kd = ka+ (2k+ 1)d, hence
2k + 1 | k(n − a). It follows that n − a is divisible by 2k + 1. However, from 2k + 1 ≤ N we
have 2k + 1 | N ! | n+ 1, hence a+ 1 is divisible by 2k + 1. This contradicts 1 ≤ a+ 1 ≤ k + 1.
So we must indeed have that b ≤ 2d

N
. It follows that a+ b ≤ 4d

N
≤ 2n

N
, and

L = lcm(a, b, c, d) = n =
n− a− b

2
≥
n− 2n

N

2
=

(
1

2
− 1

N

)
n,

as required. In conclusion, C < 1
2

is not possible, so C = 1
2

is the smallest. �
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