- There are 4 hours available for the problems.
- Each problem is worth 10 points.
- Be clear when using a theorem. When you are using an obscure theorem, cite a source.
- Use a different sheet for each problem.
- Clearly write DRAFT on any draft page you hand in.

MOAWOA :: SOLUTIONS

May 4, 2018

Problem 1. Determine all sequences $\left(a_{1}, a_{2}, \ldots, a_{2018}\right)$ of positive integers such that
(i) $a_{1}+a_{2}+\ldots+a_{2018}=3 \cdot 2018$;
(ii) the sum of consecutive a_{i} is never a power of 2 . (In particular, none of the a_{i} is a power of 2.)
(A power of 2 is a number of the form 2^{k} with $k \geq 1$ an integer.)
Proposed by Merlijn Staps.
Solution. There are three sequences possible: $(3,3, \ldots, 3),(1,5,1,5, \ldots, 1,5)$, and ($5,1,5,1$, $\ldots, 5,1$). We first show that these are valid. Clearly all three sequences satisfy (i). The first sequence satisfies (ii) because the sum of consecutive terms is always a multiple of 3 . For the other two sequences (ii) follows from the fact that the sum of consecutive terms is either odd (if we sum an odd number of terms) or a multiple of 3 (if we sum an even number of terms), hence never a power of 2 .
We now prove that there can be no other valid sequences. First, we note that $a_{2 i-1}+a_{2 i}$ cannot be equal to 2 (a power of 2), 3 (then one of them would be 2 , hence a power of 2), 4 (a power of 2) or 5 (then one of them would be 2 or 4 , hence a power of 2). It follows that $a_{2 i-1}+a_{2 i} \geq 6$ for all i. By summing this inequality we obtain

$$
3 \cdot 2018=\sum_{i=1}^{2018} a_{i}=\sum_{i=1}^{1009}\left(a_{2 i-1}+a_{2 i}\right) \geq \sum_{i=1}^{1009} 6=6 \cdot 1009
$$

meaning that there should be equality in each inequality. We conclude that $a_{2 i-1}+a_{2 i}=6$ for $i=1,2, \ldots, 1009$, which implies that $\left(a_{2 i-1}, a_{2 i}\right)$ should be $(3,3),(1,5)$, or $(5,1)$. Suppose the pair $(3,3)$ occurs at least once. Because a 3 cannot occur adjacent to a 1 or a 5 in the sequence (both $3+1$ and $3+5$ are powers of 2), it then follows that $a_{i}=3$ for all i (the first solution). If not, each pair is equal to $(1,5)$ or $(5,1)$. Because there cannot be two consecutive ones in the sequence, the sequence must be of the form

where $p+q=1009$. If p and q are both positive then the sequence contains either $5,5,1,5$ (if $q \geq 2$) or $5,1,5,5$ (if $p \geq 2$) so then there are consecutive terms summing to 16 . This contradiction shows that we must have $p=0$ or $q=0$, leaving us with the second and third solution.

Problem 2. Let $k>1$ be an integer. We list all k-element subsets of $\{1,2, \ldots, 2 k-1\}$ and in each of these subsets we color one element red and one (not necessarily distinct) element blue. We say our assignment of colors is nice if whenever A and B are subsets among our list with $|A \cap B|=\ell$, the red element in A differs from the blue element in B. Does there always exists a nice assignment of colors
(a) if $\ell=1$?
(b) if $\ell=2$?

Proposed by Stijn Cambie.

Solution.

(a) Yes. In each set A we color the minimal i such that A contains both i and $i+1$ in both red and blue (where we read $i+1$ as 1 if $i=2 k-1$). Note that such an i always exists, because A contains more than half of the elements of $\{1,2, \ldots, 2 k-1\}$. If the red element in A equals the blue element in B (say both equal to i), then both A and B contain i and $i+1$, so we cannot have $|A \cap B|=1$.
(b) Yes. In each set we color the smallest element red and the largest element blue. Suppose $|A \cap B|=2$; then there are $a<b$ that are contained in both A and B. Now the red element in A is at most a, whereas the blue element in B is at least b, so these numbers cannot be equal.

Problem 3. A real $n \times n$-matrix $A=\left(A_{i j}\right)_{i, j=1}^{n}$ satisfies $A_{i i}=1$ for $1 \leq i \leq n$ and $A_{i j}+A_{j i}=1$ for $1 \leq i<j \leq n$. Show that $\operatorname{det} A>0$.

Proposed by Daniël Kroes.
Solution. Note that the determinant of A equals the product of its eigenvalues. Since the non-real eigenvalues come in pairs $(\lambda, \bar{\lambda})$ whose product is $|\lambda|^{2}>0$, it suffices to show that the product of the real eigenvalues of A is positive. We will show that in fact every real eigenvalue is positive.
Let r be a real eigenvalue of A with corresponding eigenvector $v \neq 0$. Note that $A+A^{T}=J_{n}+I_{n}$, where J_{n} is an $n \times n$-matrix with all entries equal to 1 . We obtain

$$
v^{T}\left(A+A^{T}\right) v=v^{T} J_{n} v+v^{T} I_{n} v=\left(v^{T} j\right)^{2}+|v|^{2}>0
$$

where $j=(1,1, \ldots, 1)^{t}$. On the other hand, we have

$$
v^{T}\left(A+A^{T}\right) v=v^{T} A v+v^{T} A^{T} v=v^{T} r v+(r v)^{T} v=2 r|v|^{2}
$$

Since $|v|^{2}$ is positive, it follows that r is positive as well.

Problem 4. Does there exist a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property that for all non-negative integers n the number of roots of $f^{(n+1)}$ is (strictly) greater than the number of roots of $f^{(n)}$?

Proposed by Leslie Molag.

Solution. The answer is yes. An example is given by $f(x)=e^{p(x)}$, where p is a polynomial with even degree and negative leading coefficient. In this case $f^{(n)}=q_{n} f$, where $\left(q_{n}\right)$ is a sequence
of polynomials of strictly increasing degrees. By the mean value theorem $f^{(n+1)}$ has a root between any two consecutive roots of $f^{(n)}$. Hence the number of roots of $f^{(n+1)}$ is at least one less then the number of roots of $f^{(n)}$. Furthermore, note that by our choice of p we know that f and any of its derivatives tend to 0 as $|x| \rightarrow \infty$. Denote by a and b the smallest and largest root of $f^{(n)}$ respectively. Since $f^{(n)}$ approaches 0 as $|x| \rightarrow \infty$ it must attain extremal values at some points $A \in(-\infty, a]$ and $B \in[b, \infty)$. This implies that $f^{(n+1)}(A)=f^{(n+1)}(B)=0$ and we conclude that $f^{(n+1)}$ has strictly more roots than $f^{(n)}$.

Remark. For $p(x)=-x^{2} / 2$ we obtain the Hermite polynomials. In this case $f^{(n)}$ has exactly n roots.

Problem 5. We sample a random permutation σ of the numbers $1,2, \ldots, n$, uniformly from the set of all n ! permutations. For a set $A \subset\{1,2, \ldots, n\}$ we define the event

$$
X_{A}=\{\text { all elements of } A \text { belong to the same cycle of } \sigma\} .
$$

Show that for any two sets S and T with at least 2 elements, the events X_{S} and X_{T} are positively correlated.

Proposed by Harry Smit and Merlijn Staps.

Solution. We first show that $\mathbb{P}\left(X_{A}\right)=|A|^{-1}$ for any A. Without loss of generality we assume that A is of the form $\{1,2, \ldots, k\}$. A random permutation σ of $1,2, \ldots, n$ can be constructed as follows:

- Choose $\sigma(1)$ uniformly from $\{1,2, \ldots, n\}$, then choose $\sigma(\sigma(1))$ uniformly from the remaining numbers, then choose $\sigma(\sigma(\sigma(1)))$ uniformly from the remaning numbers, etcetera. Continue until 1 is chosen and the cycle containing 1 is determined.
- Choose a random permutation of the remaining numbers.

The probability that $1,2, \ldots, k$ are all in the same cycle (the cycle containing 1), is the probability that in the first step we select each of $2,3, \ldots, k$ before we select 1 . By symmetry, this happens with probability $k^{-1}=|A|^{-1}$.
We now turn to the problem statement. Note that $X_{S} \cap X_{T} \supset X_{S \cup T}$, hence

$$
\mathbb{P}\left(X_{S} \cap X_{T}\right) \geq \mathbb{P}\left(X_{S \cup T}\right)=\frac{1}{|S \cup T|} \geq \frac{1}{|S|+|T|} \geq \frac{1}{|S||T|}=\mathbb{P}\left(X_{S}\right) \mathbb{P}\left(X_{T}\right)
$$

where the last inequality follows from $(|S|-1)(|T|-1) \geq 1$. It now suffices to show that we cannot have equality everywhere.

- If S and T are disjoint, we have $\mathbb{P}\left(X_{S} \cap X_{T} \backslash X_{S \cup T}\right)>0$ because with positive probability there exists a cycle containing all elements of S and another cycle containing all elements of T. This means the first inequality is strict.
- If S and T are not disjoint, we have $|S|+|T|>|S \cup T|$, meaning that the second inequality is strict.

We conclude that at least one of the first two inequalities is strict. This means that $\mathbb{P}\left(X_{S} \cap\right.$ $\left.X_{T}\right)>\mathbb{P}\left(X_{S}\right) \mathbb{P}\left(X_{T}\right)$, hence X_{S} and X_{T} are positively correlated.

Problem 6. Determine the smallest constant $C>0$ with the following property: if $n \geq 4$ is a positive integer, then there exist positive integers a, b, c and d such that $a+b+c+d=n$ and $\operatorname{lcm}(a, b, c, d) \leq C n$.

Proposed by Merlijn Staps.

Solution. The smallest such C is $C=\frac{1}{2}$.
We first show $C=\frac{1}{2}$ has the desired property. If $n=2 k$ with $k \geq 2$ is even we take $(a, b, c, d)=$ $(1,1, k-1, k-1)$ with $a+b+c+d=2 k=n$ and $\operatorname{lcm}(a, b, c, d)=k-1<k=C n$. If $n=4 k+1$ we choose $(a, b, c, d)=(1, k, k, 2 k)$ with $a+b+c+d=4 k+1=n$ and $\operatorname{lcm}(a, b, c, d)=2 k<\frac{4 k+1}{2}=C n$. Finally, if $n=4 k+3$ we choose $(a, b, c, d)=(1,2,2 k, 2 k)$ with $a+b+c+d=4 k+3=n$ and $\operatorname{lcm}(a, b, c, d)=2 k<\frac{4 k+3}{2}=C n$. We conclude that $C=\frac{1}{2}$ works (with the inequality being strict).
Next we prove that $C<\frac{1}{2}$ do not have the required property. Take such C and let $N \geq 5$ be a natural number satisfying $C<\frac{1}{2}-\frac{1}{N}$. By Dirichlet's theorem on primes in arithmetic progressions, there exists a prime n such that $n \equiv-1 \bmod N!$. We will show that if $a+b+$ $c+d=n$ we always have $\operatorname{lcm}(a, b, c, d) \geq\left(\frac{1}{2}-\frac{1}{N}\right) n>C n$. Indeed, let $L=\operatorname{lcm}(a, b, c, d)$. If $L \geq \frac{n}{2}$ then clearly $L \geq\left(\frac{1}{2}-\frac{1}{N}\right) n$, so suppose $L<\frac{n}{2}$. Without loss of generality we assume that $a \leq b \leq c \leq d$. Then it follows that $d \leq L<\frac{n}{2} \leq \frac{4 d}{2}=2 d$, so since L is a multiple of d we must have $L=d$. It follows that a, b and c divide d. From $a \leq b \leq c \leq d<\frac{n}{2}$ we have $c=\frac{d}{2}$ of $c=d$, because otherwise $a+b+c+d<n$. If $c=\frac{d}{2}$ we similarly find $b=\frac{d}{3}$ or $b=\frac{d}{2}$. In the first case, we have $a=\frac{d}{3}$ (hence $13 d=6 n$), $a=\frac{d}{4}$ (hence $12 n=25 d$), or $a=\frac{d}{5}$ (hence $30 n=61 d$). We find that n is divisible by a prime at most 61 , which is a contradiction because n is a prime that is at least $5!-1=119$. So $b=\frac{d}{3}$ is impossible. If $b=\frac{d}{2}$ we find $n=2 d+a$ where $a \mid d$. From $a \mid n$ it now follows that $a=1$ (n is prime). Since d is even (otherwise b would not be an integer) we find $n \equiv 1 \bmod 4$, contradiction. We have now excluded $c=\frac{d}{2}$, so the case $c=d$ remains. Note that in this case $\operatorname{gcd}(a, b)=1$, because $\operatorname{gcd}(a, b)$ divides $n=2 d+a+b$. Therefore we have $a b \mid d$. We claim that $b \leq \frac{2 d}{N}$. If not, we would have $b=\frac{d}{k}$ with $2 k<N$, and from $a b \leq d$ it follows that $a \leq k$. Now we find $k n=k a+k b+k c+k d=k a+(2 k+1) d$, hence $2 k+1 \mid k(n-a)$. It follows that $n-a$ is divisible by $2 k+1$. However, from $2 k+1 \leq N$ we have $2 k+1|N!| n+1$, hence $a+1$ is divisible by $2 k+1$. This contradicts $1 \leq a+1 \leq k+1$. So we must indeed have that $b \leq \frac{2 d}{N}$. It follows that $a+b \leq \frac{4 d}{N} \leq \frac{2 n}{N}$, and

$$
L=\operatorname{lcm}(a, b, c, d)=n=\frac{n-a-b}{2} \geq \frac{n-\frac{2 n}{N}}{2}=\left(\frac{1}{2}-\frac{1}{N}\right) n,
$$

as required. In conclusion, $C<\frac{1}{2}$ is not possible, so $C=\frac{1}{2}$ is the smallest.

